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Abstract
Objective Currently, there is a worldwide shift toward competency-based medical education. This necessitates the use
of automated skills assessment methods during self-guided interventions training. Making assessment methods that are
transparent and configurable will allow assessment to be interpreted into instructional feedback. The purpose of this work is
to develop and validate skills assessment methods in ultrasound-guided interventions that are transparent and configurable.
Methods We implemented amethod based upon decision trees and amethod based upon fuzzy inference systems for technical
skills assessment. Subsequently, we validated these methods for their ability to predict scores of operators on a 25-point global
rating scale in ultrasound-guided needle insertions and their ability to provide useful feedback for training.
Results Decision tree and fuzzy rule-based assessment performed comparably to state-of-the-art assessment methods. They
produced median errors (on a 25-point scale) of 1.7 and 1.8 for in-plane insertions and 1.5 and 3.0 for out-of-plane insertions,
respectively. In addition, these methods provided feedback that was useful for trainee learning. Decision tree assessment
produced feedback withmedian usefulness 7 out of 7; fuzzy rule-based assessment produced feedback withmedian usefulness
6 out of 7.
Conclusion Transparent and configurable assessment methods are comparable to the state of the art and, in addition, can
provide useful feedback. This demonstrates their value in self-guided interventions training curricula.

Keywords Ultrasound-guided needle insertion · Simulation-based training · Medical education · Objective skill assessment

Introduction

Globally, skills training for medical interventions is tran-
sitioning from a time-based model to a competency-based
model. Under the old time-basedmodel, trainees would prac-
tice an intervention for a fixed amount of time, at which
point they would be deemed competent and graduate, or they
would be deemed incompetent and have to undertake signif-
icant remediation. Under the new competency-based model,
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trainees practice until they achieve a predefined competency
benchmark. This scheme allows each trainee to practice the
precise amount of time they need to achieve competency. The
drawback of this method is that trainees’ competency needs
to be continually monitored.

Expert-based methods for skills assessment include
checklists, global rating scales, and entrustments scores.
Checklists are application-specific rubrics which assess
whether the operator performs each step in the intervention
correctly [1]. Global rating scales (GRS) offer application-
independent assessment of interventions across several dif-
ferent facets [2]. Entrustment scores assess to what degree
a supervisor trusts the trainee to complete each face of
the intervention [3]. While these methods provide reliable
assessment, in particular when combined [4], they rely on
experts. With increasing medical class sizes and demands
on expert time, it is not feasible to implement expert-based
assessment on a wide scale. Instead, skill assessment should
be automated.
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Automated skills assessment can be applied to many dif-
ferent interventions (e.g., laparoscopy, open surgery, needle
insertion, etc.), and can use data from many sources (e.g.,
instrument tracking, video, surgeon status, patient monitors)
[5], [6]. Perhaps, the most common method for automated
skills assessment is metrics-based assessment. Under this
paradigm, clinical experts specify what aspects of the inter-
vention are relevant to operator skill. Subsequently, these can
be implemented into a set of performance metrics: quantities
that are understandable to trainees and clinicians and can be
readily computed from measurable data. From these perfor-
mance metrics, an overall skill level can be derived using
pattern recognition or machine learning approaches.

Metrics-based overall skills assessment was initially
addressed as an optimization problem, where each met-
ric is treated as a cost and the most skillful operator is
the one who best minimized the weighted sum of costs
[7, 8]. Since, pattern recognition approaches have been
used to achieve improved reliability in assessment. Chmarra
et al. showed that linear discriminant analysis reliably dis-
tinguishes novices from intermediates and from experts
in laparoscopic training tasks [9]. Likewise, Allen et al.
showed that support vector machines outperform cost-based
approaches for skill classification in laparoscopic training
tasks [10]. Oropesa et al. also demonstrated that support vec-
tor machines outperform linear discriminant analysis and
adaptive neuro-fuzzy inference systems for laparoscopic
training tasks [11]. Ahmidi et al. use support vectormachines
for skill classification for several difference types of per-
formance metrics in septoplasty [12]. Fard et al. contrasted
support vector machines with k-nearest neighbors and logis-
tic regression for identifying novices and experts in robotic
suturing tasks on real patients [13]. Kramer et al. have sug-
gested learning vector quantization and self-organizingmaps
for assessment in simulated vascular surgery [14]. Neural
network-based approaches have seen some success [15].
Fuzzy pattern recognition approaches have also gained some
traction, including rule-based methods [16, 17] and adaptive
fuzzy inference systems [18].

In consultation with clinical experts, we suggest two cri-
teria which metrics-based skills assessment methods should
meet in order to be clinically useful: transparency and
configurability. A machine learning approach is consid-
ered transparent if both the models are easy to interpret
and the principal of the method is easily understood [19,
20]. A machine learning approach is considered config-
urable if it has parameters which can be configured to
improve performance based on domain knowledge from a
domain expert (Chiticariu et al. consider this a component
of transparency [20]). In interventional skills assessment,
transparency allows both the supervisor and trainee to under-
stand why the trainee received a particular score and to
interpret their results into actionable strategies to improve

performance. Configurability allows the expert to adjust the
assessment to their particular training scenario or to empha-
size particular skills.

Of course, there are othermethods for interventional skills
assessment that are not based on performancemetrics. In par-
ticular, temporalmodeling [21], processmonitoring [22], and
end-to-end deep learning approaches [23] have shown some
promise for skills assessment. Unfortunately, these methods
do not provide adequate transparency to allow trainees and
supervisors to interpret results into actionable feedback to
improve performance. Crowdsourcing can also provide accu-
rate skills assessment and is effectively automated [24], but
cannot provide immediate feedback.

The objective of this work is to develop and validate
methods for overall skills assessment in percutaneous inter-
ventions. The methods should be transparent, configurable,
and conducive to self-guided training. Subsequently,we eval-
uated (1) the accuracy of the proposed methods compared
to state-of-the-art computer-assisted assessment and (2) the
usefulness of the feedback provided by our proposed meth-
ods.

A preliminary version of this work has been reported [25].

Methods

Skills assessment algorithms

We aim to implement skills assessment algorithm which are
transparent and configurable. Transparency and configurabil-
ity are inherently subjective and fuzzy. In a reviewof common
machine learning techniques,Kotsiantis identified three tech-
niques as highly transparent: decision trees, Naïve Bayes,
and rule-based learners [19]. Naïve Bayes is more applicable
for classification and performs poorly for regression tasks
[26]. This leaves decision trees and rule-based learners as
transparent and configurable machine learning approaches
for interventional skills assessment. Each skills assessment
method takes a set of performance metrics as input (i.e., fea-
ture vector) and computes an overall skill level as output.

Decision tree assessment

For transparent and configurable assessment using decision
trees, we use importance-aided decision trees [27] (Fig. 1).
This method is intended to incorporate domain knowledge
into decision trees, especially in lower levels of the decision
tree when training data is limited.

In decision tree learning, a split is made based on the
attribute and value which optimizes some measure of purity
of each branch. In our case, for regression, we choose the
within-branch variance as the attribute selection score. Fol-
lowing Al Iqbal et al., for an attribute x , we create a new
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Fig. 1 Illustration of importance-aided decision tree assessment (left) and fuzzy rule-based assessment (right) in ultrasound-guided needle insertion
assessment using performance metrics

attribute selection score S based on a linear combination of
thewithin-branch variance score Sv and the attribute’sweight
W [27].

S(x) � (1 − ρ)Sv(x) + (ρ)W (x)

We select the attribute and split point which optimizes
this new attribute selection score S. The coefficient in the
linear combination ρ grows inversely with the proportion of
remaining training samples in the branch [27]. The splitting
is stopped once the within-branch variance decreases beyond
a certain threshold. At this point, all training instances in the
branch will effectively have the same skill level. We observe
that in the case of equal attribute weights, this functions in
the same way as a classical decision tree.

As identifiedbyKotsiantis, thismethod is transparent [19].
The user is presented with the traversal of the decision tree
and the splitting criteria. As actionable feedback, we can
identify the metrics associated with splits in the traversal
where the branch center changed the most. The feedback
“well done” is provided when all splits in the traversal result
in positive change in the branch center. This method is con-
figurable in that the weights associated with each attribute
can be adjusted. As demonstrated by Al Iqbal et al., incor-
porating this domain knowledge into the decision tree can
improve the accuracy of assessment [27].

Fuzzy rule-based assessment

For rule-based assessment that is transparent and config-
urable, we use a set of fuzzy inference rules (Fig. 1). In
particular, we choose to use rules of the form: IF <metric> is
<skill level> THEN operator is <skill level>. For example,
IF elapsed time is expert THEN operator is expert. Such a
rule is defined for each metric and skill level pair.

In practice, this requires us to define a membership func-
tion for each skill class and a membership function for each
metric for each skill class. We define the skill class mem-

bership functions as symmetrical triangular functions on the
range [0, 1], overlapping such that membership over all
classes sums to one [16, 17]. Themetricmembership function
for each skill class is computed empirically from the train-
ing data by Gaussian kernel density estimation, using the
Silverman’s rule-of-thumb to estimate the bandwidth [28].
Importantly, each training instance may have membership in
multiple skill classes and contribute with different weights
to multiple metric membership functions.

We use clipping based on the membership in the input
function to compute the outputmembership function for each
rule. The set of fuzzy rules is combined and defuzzified by
computing the mean of the maximum of the output member-
ship functions.

This rule-based assessment method is transparent [19].
Theuser is presentedwith the rules thatwere applied and their
strengths.As actionable feedback,wecan identify themetrics
for which the net influence of all associated fuzzy rules is the
strongest. The feedback “well done” is provided when for
each metric, the net influence of all rules associated with that
metric is positive. Thismethod can be configured by allowing
the weights associated with each rule to be adjusted or fuzzy
rules to be added or removed. In particular, experts can add
more sophisticated rules based on their domain knowledge
for improved accuracy.

Validation of assessment accuracy

We validated our assessment methods on both in-plane and
out-of-plane needle insertions on a vascular access phantom
(CAE Healthcare), following the setup used in Xia et al.
[29]. We recorded 19 trainees and five experts performing
in-plane insertions and 19 trainees and five experts perform-
ing out-of-plane insertions. Trainees were recorded at two
points during a training curriculum (Fig. 2). Experts were
each recorded once. Operators used a TelemedMicrUs linear
ultrasound probe (Telemed Medical Systems). We recorded
videos of participants’ hands and tracked the needle and
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Fig. 2 Photograph of a trainee participant performing an ultrasound-
guided in-plane needle insertion (top) and schematic diagram of setup
(bottom). The electromagnetic pose trackers used are attached to the
base of the needle, base of the ultrasound probe, and exterior of the
phantom

ultrasound probe. Tools were tracked with the Ascension
trakStar (Northern Digital Inc.), and data was recorded using
the PLUS Toolkit (www.plustoolkit.org) [30] and Perk Tutor
(www.perktutor.org) [31].We computed eight metrics for in-
plane insertions and sevenmetrics for out-of-plane insertions
(Table 1) [29]. These metrics were designed based on con-
sultation with clinical experts, and they are intended to cover
all relevant aspects of the ultrasound-guided needle insertion
tasks.

As ground-truth assessment, we did not use participants’
level of training. Instead, we recruited three clinical experts
to assess participants’ performance via anonymized hand
motion videos using a previously validated global rating
scale [32, 33]. The mean overall expert assessment provides
a ground-truth skill level out of 25.

To determine the weight associated with each metric, we
interviewed the same three clinical experts who provided rat-
ings on the global rating scale, and we asked them to rate the
importance of each metric for skills assessment on a seven-
point Likert scale. We linearly scaled these ratings onto the
interval [0, 1].

Subsequently, we validated the performance of our pro-
posed assessment methods using leave-one-user-out cross-
validation. We computed difference in the output of the
proposed assessment methods with the mean expert rating.
We then compared these results with the results achieved

Table 1 Description of performance metrics for in-plane and out-of-
plane insertions

In-plane metrics

Elapsed time (s) Total time from the start of the
insertion to the end of the
insertion

Needle path length (mm) Total distance travelled by the
tip of the needle

Probe path length (mm) Total distance travelled by the
foot of the ultrasound probe

Needle path efficiency (%) Ratio of the needle’s path length
to the distance between the
needle’s start and end points

Average needle to ultrasound
plane distance (mm)

Average orthogonal distance
between the needle tip and the
ultrasound plane

Maximum needle to ultrasound
plane distance (mm)

Maximum orthogonal distance
between the needle tip and the
ultrasound plane

Average needle to ultrasound
plane angle (°)

Average angle between the
needle and the ultrasound
plane

Maximum needle to ultrasound
plane angle (°)

Maximum angle between the
needle and the ultrasound
plane

Out-of -plane metrics

Elapsed time (s) Total time from the start of the
insertion to the end of the
insertion

Needle path length (mm) Total distance travelled by the
tip of the needle

Probe path length (mm) Total distance travelled by the
foot of the ultrasound probe

Needle path efficiency (%) Ratio of the needle’s path length
to the distance between the
needle’s start and end points

Maximum distance needle is
past ultrasound plane (mm)

Maximum orthogonal distance
the needle tip travels past the
ultrasound plane

Total time needle is past
ultrasound plane (s)

Total time spent with the needle
tip past the ultrasound plane

Average rotation from needle to
ultrasound plane normal (°)

Average angle between the
needle and the plane
orthogonal to the ultrasound
marked–unmarked vector

from several standard methods: (1) zero-rule regression (i.e.,
always guessing the mean scores), (2) linear regression, an
empirically optimal version of the sum of z-scores method
[8], (3) support vector machine regression, which has been
shown to achieve state-of-the-art results in several assess-
ment tasks [10–13], (4) nearest neighbor regression with
sequential forward feature selection, which achieves highly
accurate assessment in suturing and knot tying [34, 35], and
(5) random regression forests, a generalization on decision
tree regression. To compare the methods, we used a Fried-
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Table 2 Plain-language
feedback associated with each
performance metric for in-plane
and out-of-plane insertions

In-Plane Metrics

Elapsed Time (s) F1. Keep prac�cing with proper technique to improve your 
�me efficiency.

Needle path length (mm) F2. Look at the depth of your target, and try to es�mate the 
correct angle of needle inser�on.

Probe path length (mm)
F3. Get a longitudinal ultrasound image of the middle of the 
vessel and stabilize the probe using your hand/finger against 
the gel surface.

Needle path efficiency (%)
F4. Try to focus on a smooth, straight needle path while 
inser�ng the needle as close to the ultrasound plane as 
possible.

Average needle to ultrasound 
plane distance (mm) F5. Start with the needle in the middle of the ultrasound 

probe and try to keep it aligned with the ultrasound plane 
during needle inser�on.Maximum needle to ultrasound 

plane distance (mm)
Average needle to ultrasound 
plane angle (°) F6. Do not change the angle between the needle and the 

ultrasound plane during needle inser�on. This will make sure 
that there is perfect alignment.Maximum needle to ultrasound 

plane angle (°)
F7. Well done.

Out-of-Plane Metrics

Elapsed Time (s) F1. Keep prac�cing with proper technique to improve your 
�me efficiency.

Needle path length (mm) F2. Look at the depth of your target, and try to es�mate the 
correct angle of needle inser�on.

Probe path length (mm)
F3. Do not move the probe when advancing the needle. 
Advance the probe very slightly when the needle appears in 
the ultrasound image.

Needle path efficiency (%) F4. Insert the needle in a straight, smooth path.
Maximum distance needle is 
past ultrasound plane (mm)

F5. Keep the ultrasound plane slightly ahead of the needle. 
If you see the needle �p on the screen, move the ultrasound 
slightly ahead un�l the needle disappears and then con�nue 
needle inser�on un�l the needle appears again.

Total �me needle is past 
ultrasound plane (s)

Average rota�on from needle to 
ultrasound plane normal (°)

F6. Start with the target in the middle of the ultrasound 
screen, with the needle in the middle of the probe at 90° to 
the probe and 45° to the gel surface. Do not change this 
angle during the needle inser�on.
F7. Well done.

man test with pairwise Dunn’s post hoc tests with Bonferroni
correction (α � 0.05). To determine whether our assess-
ment methods are comparable to these other methods, we
performed non-inferiority signed-rank tests (α � 0.05) with
the pooled standard deviation in expert ratings as the non-
inferiority margin.

To determine the added value of expert-configured assess-
ment, we used Bonferroni-corrected signed-rank tests (α
� 0.05) to compare unconfigured assessment with expert-
configured assessment. We tested: (1) assessing the mean
expert-assigned score using the mean expert configuration
and (2) assessing each expert-assigned score using each
expert’s respective configuration.

Validation of feedback accuracy

To assess the quality of feedback provided by our meth-
ods, we mapped each metric to a plain-language description
(Table 2). This was done in consultation with our clinical
experts to ensure the vocabulary covers all possible feedbacks
an expert might provide to trainees during in a typical train-
ing scenario. Subsequently, we asked one expert to review
each trainee’s post-training video (as this was identified by
experts as the most useful stage for feedback). At the end of
each video, we showed the expert all the different feedbacks
and asked them to rate the usefulness of each one on a seven-
point Likert scale (1 � strongly disagree that feedback was
useful; 4 � neutral; 7 � strongly agree that feedback was
useful).
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Fig. 3 Error in assessment for the decision tree (DT), fuzzy rule-based
(FRB), zero-rule (ZR), linear regression (LR), support vector machine
(SVM), nearest neighbor with sequential forward feature selection

(SFFS-NN), and random forest (RF) assessment methods for in-plane
insertions (left) and out-of-plane insertions (right). Data from 24 users
over 43 trials

We compared the usefulness of the feedback provided by
the proposed methods with the usefulness of the kth most
useful feedback by signed-rank test (α � 0.05), for all k.
We report the smallest k for which the predicted feedback
is significantly more useful than the kth most useful feed-
back provided by the expert. This provides evidence of the
usefulness of the proposed methods relative to expert feed-
back, without being skewed by the fact that experts found the
majority of feedbacks to be useful. We also report confusion
matrices for the truly most useful feedback compared to the
predicted feedback.

Results

Assessment accuracy

For ground-truth skill, the average measures intraclass corre-
lation coefficientwas 0.90 for the in-plane insertions and 0.93
for the out-of-plane insertions, indicating good reliability.
For decision tree assessment and fuzzy rule-based assess-
ment, respectively, the median errors were 1.7 and 1.8 for
in-plane insertions and 1.5 and 3.0 for out-of-plane insertions
(Fig. 3). Post hoc tests revealed decision tree assessment sig-
nificantly outperformed all methods except support vector
machine assessment (Table 3).

Decision tree assessment was non-inferior to all other
assessmentmethods for both in-plane and out-of-plane inser-
tions. Fuzzy rule-based assessment was non-inferior to all
other assessment methods for in-plane insertions. For out-
of-plane insertions, however, significance was not achieved.
In fact, for out-of-plane insertions, fuzzy rule-based assess-
ment was non-inferior to only zero-rule and nearest neighbor
with sequential forward feature selection.

Table 3 Results of post hoc testing for differences in decision tree (DT),
fuzzy rule-based (FRB), zero-rule (ZR), linear regression (LR), support
vector machine (SVM), nearest neighbor with sequential forward fea-
ture selection (SFFS-NN), and random forest (RF) assessment

Assessment method Mean rank Significance

In-plane

Decision tree 3.09 < ZR

Fuzzy rule-based 4.40 > RF

Zero-rule 5.74 >DT, LR, SVM,
SFFS-NN, RF

Linear regression 3.63 <ZR

Support vector machine 4.09 <ZR

SFFS-nearest neighbor 4.21 <ZR

Random forest 2.84 <FRB, ZR

Out-of -plane

Decision tree 3.19 <FRB, ZR, SFFS-NN

Fuzzy rule-based 4.63 >DT, SVM, RF

Zero-rule 5.81 >DT, LR, SVM, RF

Linear regression 3.88 <ZR

Support vector machine 3.21 <FRB, ZR

SFFS-nearest neighbor 4.60 >DT, RF

Random forest 2.67 <FRB, ZR, SFFS-NN

Mean ranks indicate the mean rank of accuracy for the method when
compared to the other methods. Significance indicates which methods
were significantly different, and whether the method was more accurate
(<) or less accurate (>)

Reliability in the mean expert-defined weights was poor.
The average measures intraclass correlation coefficient was
0.49 for in-plane insertions and 0.32 for out-of-plane inser-
tions. When we used the expert-defined weights in the
configurable assessment methods, the change in accuracy
was insignificant (Fig. 4).
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Fig. 4 Error in assessment for decision tree (DT) and fuzzy rule-based
(FRB) assessment methods with or without expert-defined weights for
in-plane insertions (left) and out-of-plane insertions (right). Top row
shows results from predicting the mean expert-assigned score using

the mean expert configuration; bottom row shows results from predict-
ing each individual expert-assigned score with each expert’s respective
configuration. Data from 24 users over 43 trials

Feedback accuracy

The usefulness of the feedback was rated a median 7 out of
7 and a mean 5.8 out of 7 on a Likert scale for decision tree
assessment. Likewise, the usefulness of the feedback was
rated a median 6 out of 7 and a mean 5.3 out of 7 on a Lik-
ert scale for fuzzy rule-based assessment (Fig. 5). Decision
tree assessment produced useful feedback 74% of the time,
and fuzzy rule-based assessment produced useful feedback
63% of the time (feedback rated 5, 6, or 7 out of 7 on a Lik-
ert scale). Furthermore, both methods produced significantly
better than neutral feedback. Confusion matrices illustrate
the most commonly misclassified feedback (Fig. 6).

Compared to expert feedback, we found that for in-plane
insertions, both decision tree assessment and fuzzy rule-
based assessment produced significantly better feedback than
the fifth best expert feedback. For out-of-plane insertions,
decision tree assessment produced significantly better feed-
back than the third best expert feedback, and fuzzy rule-based
assessment produced significantly better feedback than the

fifth best expert feedback. In all cases, the feedback pro-
duced by the proposed methods was better than the median
expert feedback, but this was significant only for decision
tree assessment in out-of-plane insertions.

Discussion

The results show that transparent and configurable assess-
ment methods (1) perform comparably to state-of-the-art
methods and (2) provide useful feedback for training. In par-
ticular, decision tree assessment performed most accurately
and provided the most useful feedback for our dataset. We
did not observe a significant change in assessment accuracy
when experts configured the proposedmethods based on their
domain knowledge [36, 37]. We believe the lack of signif-
icant improvement in the presented results may be due to
our definition of ground-truth skill as a sum of global rat-
ing scale scores, without considering the importance of each
aspect. Furthermore, the experts found all the metrics that
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Fig. 5 Usefulness of feedback produced by the decision tree (DT) and fuzzy rule-based (FRB) assessment methods for in-plane insertions (left)
and out-of-plane insertions (right). Red line indicates median. Data from 24 users over 43 trials

Fig. 6 Confusion matrices illustrating errors in predicted feedback for
in-plane (top) and out-of-plane (bottom) ultrasound-guided needle
insertions using importance-aided decision tree (left) and fuzzy rule-
based (right) assessment. Ties are distributed across all tied labels.

Labels correspond to feedback vocabulary. Blue shading indicates cor-
rect predictions; red shading indicates incorrect predictions. Intensity
of shading indicates higher concentration. Data from 19 users over 19
trials

were defined to be useful on average (rated as 5 or higher out
of 7), and thus, the expert configurations are not substantially
different from the default configuration.

We have identified our methods as transparent and iden-
tified methods such as support vector machines as opaque.
While we have followed the work of Kotsiantis in identifying
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machine learning techniques as transparent [19], these clas-
sifications are inherently fuzzy. Although there is ongoing
work in introspection in deep learning [38] allowing users to
gain some understanding of how the deep model reached the
result, it is unclear how well such methods will be accepted
into practice [39].

One of the limitations of our feedback is the finite nature
of our feedback vocabulary. While our feedback vocabulary
was generated in consultation with experts to cover every
aspect of the intervention, it does not allow feedback to be
tailored to a particular trainee, as preceptors would do in
practice. We observed that experts rated the top feedback as
a median 7 out of 7, indicating they agreed that the feedback
from the vocabulary was indeed useful.

Another challenge of this work was determining the
weights for each feature. We used a Likert scale to capture
experts’ opinion about the importance of each aspect of the
intervention, and linearly scaled these responses to weights.
But we observed that there was poor consistency between
experts. This indicates that each expert may value different
aspects of ultrasound-guided insertions. Our methods would
allow the assessment to be tailored to each expert individu-
ally.

Although there are five experts and nineteen trainees for
each of the in-plane and out-of-plane insertions, we observe
that ground-truth global rating scores cluster toward the
higher end of the scale. This creates a problem of unbalanced
regression and may affect the reported results.

We observed that in 8% and 29% of cases, “well done”
was incorrectly predicted as the most useful feedback, for
decision tree assessment and fuzzy rule-based assessment,
respectively. But the feedback “well done” may not be the
most instructive for trainees. The proposedmethods could be
adapted to provide this feedback less frequently. For decision
tree assessment, this could be achieved by requiring all splits
in the traversal to have a change in branch center above a
certain threshold. Analogously, for fuzzy rule-based assess-
ment, this could be achieved by requiring the net influence
of all rules associated with each metric to be above a certain
threshold. The threshold value could be tuned to optimize a
sensitivity and specificity criterion.

We have shown that the proposed methods work effec-
tively for skills assessment and feedback in both in-plane
and out-of-plane ultrasound-guided needle insertions. Our
setup has shown evidence for face and content validity
[29]. Because the overwhelming majority of ultrasound-
guided interventions use one of these approaches, we suggest
the results will apply to most ultrasound-guided interven-
tions. Recent work has shown that it takes approximately 85
practice attempts to reach proficiency in ultrasound-guided
needle insertions [40]. Our experts believe that the feedback
provided by our systemwill bemost applicable after ten prac-

tice attempts when the trainee has fully understood the basics
of the intervention.

Our results are consistent with other work demonstrat-
ing the utility of metrics-based assessment of interventional
skills [7, 8]. In the context of ultrasound-guided needle
insertions, we have shown that transparent and configurable
methods are comparable to state-of-the-art methods for
assessment but, in addition, can provide useful feedback.

In the future, we suggest further study into how the
proposed methods perform in specific ultrasound-guided
interventions (e.g., biopsy, epidural, central line) and how
they may be extended to other types of interventions. It
has been previously shown that generic performance met-
rics may not be equally applicable to all interventions [41]
and application-specific metrics provide added value over
generic metrics [42]. Thus, in order to extend these methods
to other interventions, it is necessary to develop application-
specific performance metrics and a feedback vocabulary in
consultation with expert clinicians. These are the only places
where we have infused application-specific knowledge into
the proposed methods.

We also suggest a future longitudinal study examining the
effect of providing the proposed computer-generated feed-
back on trainee learning. Such a study could better identify
the added value of the proposed feedback methods over self-
guided training without feedback. Prior work has shown that
feedback through 3D visualization can improve ultrasound-
guided interventions learning [43], but has not evaluated the
impact of targeted feedback.

We make the proposed methods available to the commu-
nity through Perk Tutor (www.perktutor.org) [31].

Conclusion

We have demonstrated that transparent and configurable
skills assessment methods are comparably accurate to state-
of-the-art methods. In contrast to state-of-the-art methods,
however, transparent and configurable methods were shown
to provide useful feedback for training. Importance-aided
decision tree assessment provided the most accurate assess-
ment with feedback.

Thus, transparent and configurable assessment methods
can be adopted into practice to provide feedback without
compromising accuracy.Wehave also demonstrated that they
can be customized by experts to suit the particular application
or emphasize particular skills.

We envision that these methods could be employed in an
ultrasound-guided interventions training curriculum. They
wouldmonitor trainee learning curves andprovide automated
instructions during self-directing learning. This would serve
to supplement supervision and assessment from expert pre-
ceptors.
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