Preliminary evaluation of accuracy and clinical feasibility of the MR-compatible image overlay system for musculoskeletal interventions

P. U-Thainual^{1,5}, J. Fritz², N. Cho³, T. Ungi^{4,5}, A.J.M. Segundo², J.S. Lewin², G. Fichtinger^{4,5}, I. Iordachita³, J.A. Carrino²

¹Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada

²Russell H.Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA

³The Johns Hopkins University, ERC/LCSR, Baltimore, MD, USA

⁴Queen's University, School of Computing, Kingston, Ontario, Canada

PURPOSE

ercutaneous Surgery

> To evaluate the needle insertion accuracy in phantoms and cadavers.

laboratory for

> To test feasibility and to assess the work-flow of the MR overlay system.

METHODS

Figure 1: (Left)Experiment setup; (top right) Cadaver, (bottom right) Cervical spine phantom

- > We acquired MR images from a 1.5T MRI scanner (Magnetom Espree, Siemens Medical Systems) with the 1x1x1 voxel size. Calibration and planning steps were performed on a stand alone laptop with 3D Slicer based software called Perk Station Module [1], as shown in Figure 3.
- > Cervical spine phantoms and a torso cadaver were used in our study as shown in Figure 2.

Figure 2: Subjects with needles inserted; (left) Cadaver, (right) Cervical spine phantom

- > A series of experiments were performed on the subjects with 5 targets for the cadaver and 9 targets for phantoms, employing one insertion per target.
- > We used various needles to find out which needle shows less artifacts on the image. There are 20G and 22G from Somatex (Somatex, Teltow, Germany), 22G from E-Z-EM (E-Z-EM Inc., Westbury, NY, USA), 20G and 22G from Cook (Cook Incorporated, Bloomimgton, IN, USA), and 20G Invivo (Division of Philips Medical Systems, Schwerin, Germany). We also used the 22G of carbon fiber needle as a reference.

Figure 3: (Left) Surgeon located the needle entry and target point on a stand alone laptop; (right) validating the result by using Perk Station Module based on 3D Slicer

- > We reacquired MR images and validated on our software as shown in Figure 3.
- > The software recorded the elapsed time for each step.

Figure 4: (Left) Successfully needle insertions on a cadaver, (right) successfully needle insertions on two cervical spine phantoms

RESULTS

- > The results from insertions show the average error about 1.9 mm for phantoms and 3.5 mm for the cadaver, as shown in Table 1.
- > All the insertions yield successful results as shown in Figure 4.
- > The elapsed time in each step was measured from 11 experiments and summarized in chart 1.
- > The measurements of needle artifacts are shown in Table 2.

Cervical spine phantom		Cadaver		
Insertion #	Error (mm)	Insertion #	Err	or (mm)
1	2.2	1		3.1
2	2.1	2		4.0
3	2.1	3		2.7
4	1.4	4		3.5
5	0.9	5		4.3
6	3.7	Average Error (mm)		
7	2.8	Cervical phantom		Cadaver
8	0.8	<u> </u>		0000000
9	0.8	1.9		3.5

Table 1: Target error from insertions

Time elapsed in each step

	Min	Max	Average
System Setup	12	45	28.5
Calibration	6	24	15
Plan + Insertion per target	4	9	6.5

Chart 1: Summary of the time consuming in each step calculated from 11 experiments.

Figure 5: Needle artifacts in the subjects for 20G-22G followed by Table 2 from a) to h)

Table 2: Measurement of needle artifacts

CONCLUSIONS

- > The results from phantoms and cadavers are clinically acceptable.
- > Calibration and system setup are the most time consuming steps in the procedure.
- > Cook's needle shows the least artifact. E-Z-EM and Somatex show similar artifact results as shown in Table 2.

FUTURE WORK

> To continue and improve our results, we will continue cadaver experiment and collect additional data.

REFERENCE

[1] Vikal, S., P. U-Thainual, J. Carrino, I. Iordachita, G. Fischer, and G. Fichtinger, "Perk Station-Percutaneous surgery training and performance measurement platform", Computerized Medical Imaging and Graphics, vol. 34, pp. 19-32, Dec, 2009.