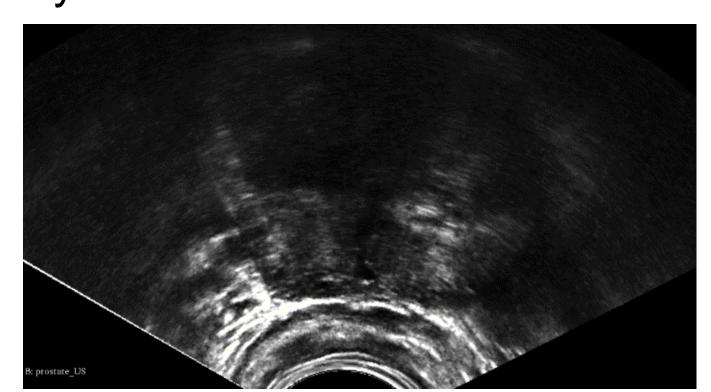


Development of an open-source system for prostate biopsy training in Senegal

Catherine O Wu¹, Babacar Diao², Tamas Ungi¹, Alireza Sedghi¹, Ron Kikinis³, Parvin Mousavi¹, Gabor Fichtinger¹

¹School of Computing, Queen's University, Canada ²Cheikh Anta Diop University, Dakar, Senegal ³Haravrd Brigham and Women's Hospital, Boston, USA


Introduction

- Prostate cancer is the second most common type of cancer diagnosed in men
- In sub-Saharan Africa, the high number of cases has led to an increase in referrals to trans-rectal ultrasound (TRUS) guided prostate biopsy¹
- This procedure requires training and proficiency in locating and targeting the four prostate zones using TRUS²
- We have partnered with an international aid program, "Train the Trainers", to develop a feasible prostate biopsy training system for identification of the prostate zones, to be deployed in Senegal³
- We present the design and work in progress on the implementation of an open-source prostate biopsy training tool, consisting of a physical system and a training interface, highlighting the generation and evaluation of the critical training component of zonal anatomy overlay on TRUS

Methods

Dataset Generation

- We used corresponding TRUS and MRI volumes from 10 patients, and the prostate zonal segmentations performed on the MRI data^{4,5}
- We overlaid the zonal segmentations onto the TRUS volumes using deformable fiducial registration (Figure 1) and used these as the simulated cases for TRUS imaging and zonal anatomy identification

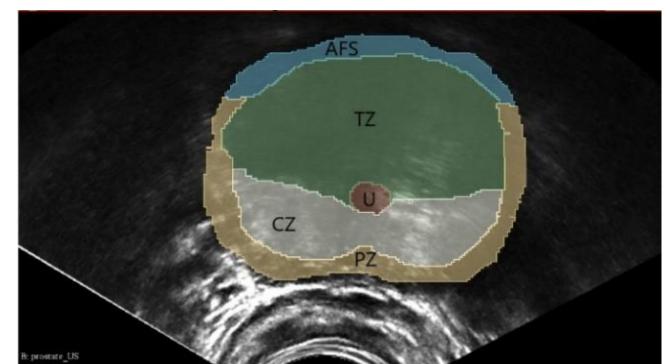
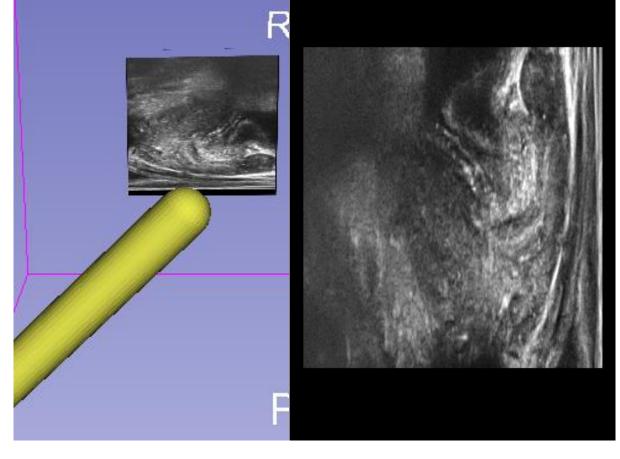
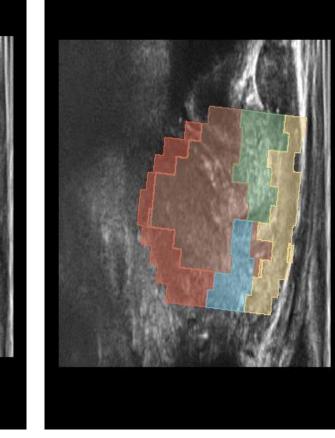




Figure 1: Prostate TRUS image (left) with labelled zonal anatomy registered and overlaid (right).

Training Module Implementation

- We implemented a Python scripted module in 3D Slicer ⁶
- The simulation scene includes a 3D view of the selected TRUS volume, a transducer, and the 2D sagittal view of the corresponding slice to the location of the transducer (Figure 2)

Figure 2: Screen shot of the training module. 3D view of the prostate volume with movable TRUS probe and corresponding 2D sagittal US slice (*left*). Corresponding 2D slice with zonal overlay (*right*).

Proposed Physical System:

- Mock TRUS probe
- ArUco Markers
- Mock rectum
- Laptop and Webcam

Mock rectum Laptop running our module ArUco markers Mock probe

Figure 3: TRUS biopsy simulator design.

Experiments:

- 1. Load images of a patient to the scene 2. Scan using UI buttons or arrow keys
- 3. Toggle zonal overlay visibility 4. Identify zones by placing fiducials in correct regions

Methods Continued

Evaluation of zonal anatomy overlay

- Seven urologists responded to a two-part survey to evaluate our overlay for suitability in training zone identification:
 - Rated ten TRUS images overlaid with registered zonal anatomy on a 5-point scale based on how accurately it reflected their interpretation of the imaged prostate
 - Labelled a specified TRUS region as one of the four prostate zones (Figure 4). We compared their labels to our own overlay.

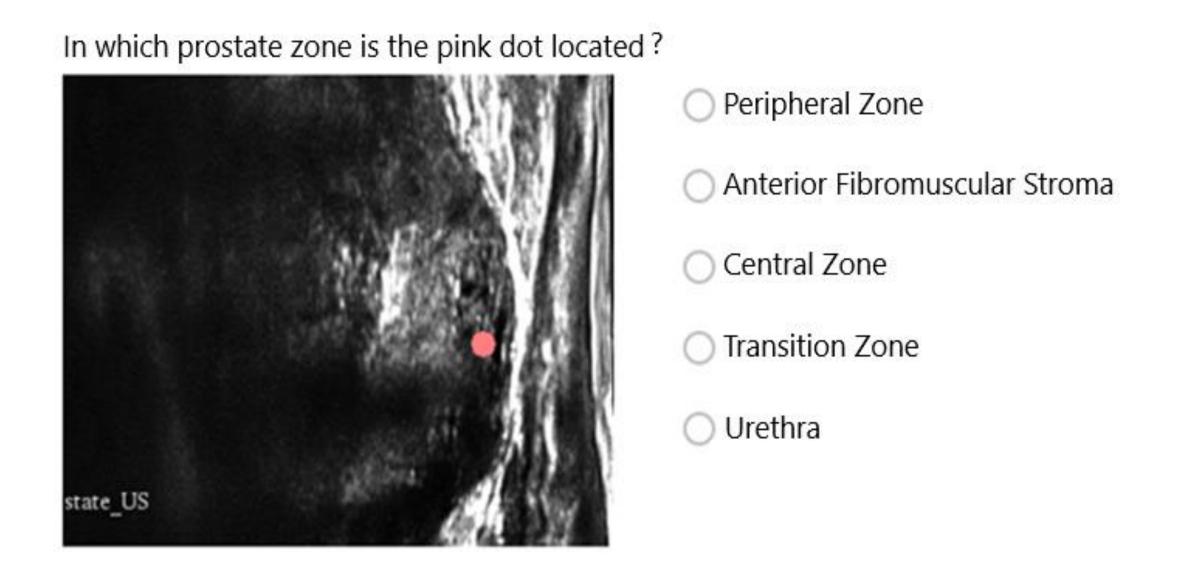


Figure 4: Example from the zone labelling section of the questionnaire.

Results

- On average, the experts rated the accuracy of the zonal overlay at 4 on a 5-point scale
- All experts labelled the transitional, anterior, and peripheral zones equivalently to our overlay. Five out of seven experts labelled the central zone equivalently to our overlay

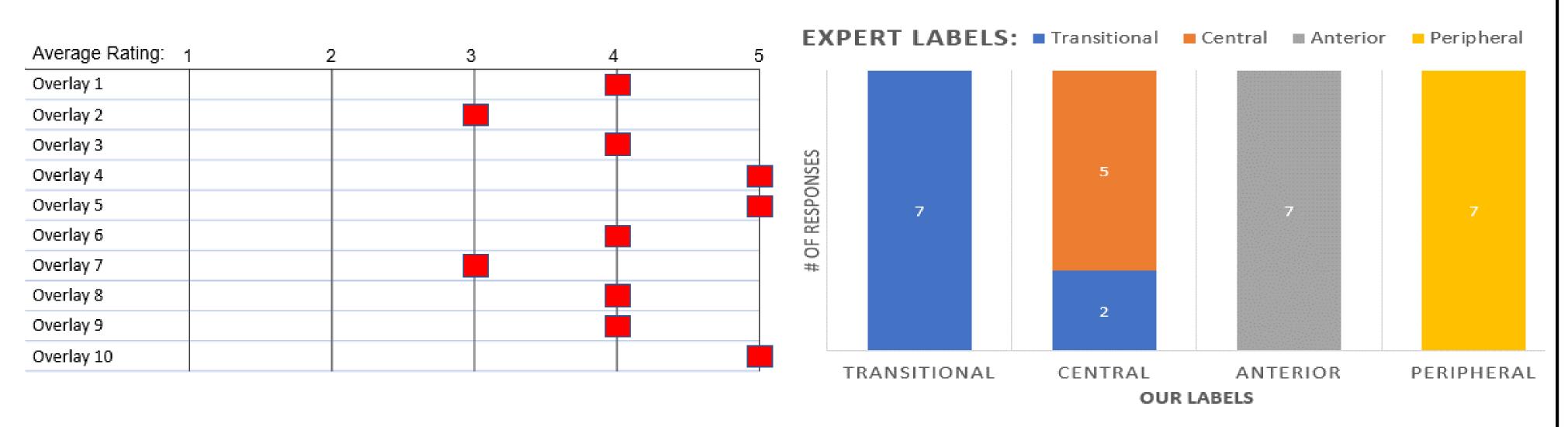


Figure 5: Results from the zonal overlay rating portion (left) and the labelling portion (right) of the survey.

Conclusion

- We designed the prototype of a TRUS biopsy imaging simulator in open-source software
- We developed and implemented a method to generate zonal overlays on TRUS, as one
 of the main features of the prostate biopsy training system
- The realism of the zonal overlay was deemed satisfactory in a survey by seven urologists

Acknowledgements

Catherine Wu was funded by the NSERC Undergraduate Summer Research Award.

G. Fichtinger is supported by a Canada Research Chair. This work was funded, in part, by CANARIE's Research Software Program.

References

- [1] Cassell A, et al. A review of localized prostate cancer: an African perspective. World J Oncol 10(4-5), 162-168 (2019).
- [2] Kepner GR, et al. Transperineal prostate biopsy: analysis of a uniform core sampling pattern that yields data on tumor volume limits in negative biopsies. Theor Biol Med Model. 2010;7(23).
- [3] Ruiz-Alzola J, et al. Train the Trainers: medical technology for the sustainable development of Africa. Proceedings of the 2018 IEEE Global Humanitarian Technology Conference (GHTC). 2018; San Jose, CA, pp. 1-8.
- [4] Meyer A, et al. Towards patient-individual PI-Rads v2 sector map: CNN for automatic segmentation of prostatic zones from T2-weighted MRI. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 2019 Venice, Italy. p. 696-700.
- [5] Imani F, et al. Computer-aided prostate cancer detection using ultrasound RF time series: in vivo feasibility study. IEEE Transactions on Medical Imaging 34(11), 2248-2257 (2015).
- [6] Fedorov A, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9), 1323-1341 (2012).

