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Abstract. Fiducial registration is useful both in applications where other regis-
tration techniques have poor performance and for validation of new registration
techniques. Registration of 3D CT or MR images to 2D X-ray images is partic-
ularly difficult, in part because automated contour extraction from 2D images is
not yet well solved and in part because of the considerable computational expense
in matching the contours to the 3D images.

This work addresses the problem of fiducial registration from a single X-ray im-
age. We have developed an algorithm for fast, efficient registration of 3D fiducial
locations to the lines cast from the X-ray source to the 2D projective image that
is 60 times faster than the popular iterated closest-point algorithm. The algorithm
has been tested on fluoroscopic images from portable C-arms and on portal im-
ages from a radiotherapy device. On these images, six or seven fiducials can be
registered within seconds to an absolute accuracy of about one millimeter and
two degrees.

1 Introduction

Image-guided minimally invasive therapy and conformal radiotherapy can benefit from
registration of a patient or tool to a preoperative image. In the case of image-guided
therapy, registration of a rigid (or near-rigid) tissue to a preoperative image permits in-
traoperative guidance; for example, in many fluoro-guided percutaneous procedures the
soft target volume is determined in preoperative CT or MR scans but the target is not
visible intraoperatively. In the case of conformal radiotherapy and fractionated radio-
surgery, it is essential that the patient is registered on the coach of the linear accelerator
in the position and orientation that was planned in pre-operative CT and/or MRI images.

These functions can be performed by registering multiple projected X-ray images,
e.g., from several positions or with several imaging systems. However, multi-image
registration not only increases the ionizing radiation dose to the patient but also requires
additional time (with the risk of patient motion occurring between the imaging instants)
or additional resources in the form of additional imaging systems (which increases the
cost). The ideal registration technique would use an automatic registration of contours
or intensities from the intraoperative image. However, automatic procedures are not yet
sufficiently fast and robust for reliable therapeutic use so an alternative technique is
worthy of examination.
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This work addresses the problem of how to estimate the pose of an known object
with a single 2D image using fiducial markers. The location of the fiducial markers
in the anatomy is known from a preoperative 3D image, and the specific problem is
to estimate the pose of the markers in the coordinates of the 2D imaging system. Our
pose estimation process has two steps: the calibration of the image and imaging device,
and the reconstruction of the pose from the image and the known spatial distribution of
the fiducial markers. We will describe an accurate algorithm for estimating the pose by
minimizing the distance between the set of 3D fiducial points and the lines that project
from the X-ray source to the 2D image sensor. By taking advantage of the geometric
constraints inherent in the problem we have developed an algorithm that is more than
60 times times faster than the iterative-closest-point algorithm and that can achieve
submillimeter registration accuracy from a single fluoroscopic image.

2 Background

Single-image registration requires a calibrated image and a registration algorithm. Here,
we briefly review the main issues and previous work on these issues.

2.1 Image Calibration

We are interested in using a single-X-ray image for registration, concentrating on C-arm
fluoroscopy and portal imaging. For portal images only minimal calibration is needed,
as the images are practically free of distortion and the machine’s internal parameters
(such as the source-to-screen distance and pixel size) are readily determined from rou-
tine procedures. But it is critical that a C-arm fluoroscope be calibrated properly, as there
is a substantial amount of distortion in fluoroscopic images and substantial mechanical
deformation of the C-arm beam. Various methods for determining global [10, 12] and
local [3,9] spatial transformations for “unwarping” image distortion have been devised,
typically using a grid of lines or points with known spatial coordinates. The deformation
for mechanical beams, which is dependent on the C-arm orientation, can be determined
beforehand[13]. For finding the internal parameters of the imaging device, X-ray cali-
bration methods |6, 11] and camera calibration methio0s [5, 14] can be applied.

2.2 Point-Based | mage Registration

Point-based 3D/3D registration of a pair of corresponding point sets, also known as
the absolute orientation problem, has been well addressed. éraln [1] provided
a least-squares solution based on singular value decomposition, and_Horn [7, 8] gave
closed-form solutions using quaternions and orthonormal matrices respectively.

If the correspondence between points is not known, or if one of the sets is not a
point set, the iterative closest point algorithm (ICP) of Besl and McKay [2] can be used.
ICP is a general algorithm for registering a point set to a geometric model, which may
be a set of points, lines, or surfaces. Typically the model is constructed preoperatively
and the data are gathered intraoperatively. ICP can also be accelérated [2] to speed the
iteration in regions where the error gradient is smooth.
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Fig. 1. Imaging geometry.

By reversing the temporal sequence, i.e., by gathering the points preoperatively and
constructing a line set model from the intraoperative image, one can use ICP to solve
the registration problem. From the X-ray image of the object, which is a 2D point set,
a set of back-projected lines can be constructed from the 2D image points to the 3D
X-ray source location (which is known from the device calibration). ICP can then be
applied between this set of 3D lines and the 3D point set of the object.

However, as we will show below, accelerated ICP needs thousands of iterations
to converge and often yields incorrect answers as it converges to a local non-global
minimum. A main reason for thisis that ICP may start with a wrong correspondence
as a point could correspond to two or more lines. Even if ICP is modified to force a
unique correspondence, results are not satisfactory because of long computation time
and high failure rate when the number of pointsare small. (ICPtakes 172 CPU seconds
on aSUN Ultra 60 to register just five points, with afailure rate of more than 16%.)

3 Computational M ethods

The main weakness of ICP in this application is the incorrect correspondence that is
found from the various initial pose estimates. The initial estimate is very important in
this application, because agood initial estimate should lead to a correct correspondence
and thus the correct pose estimate. The algorithm described here is in two parts. First
the algorithm quickly finds a set of initial estimates of the pose, each of which should
be very close to the correct estimate; then, for each initial estimate, the algorithm re-
fines the estimate by using iterative gradient descent to minimize the total least-squares
distances from the points to the corresponding model lines.
Formally, the registration problem is defined here as
Given:

— Anobject O that isaset of 3D pointsP? = {pP,... pZ} inframeB;

— A set of n coplanar image points 7¢ = {5¢,...,5¢} inframe C;

— An X-ray source location s©;

— A distance metric p(-, -) that measures the distance between a point z and the clos-
est point online L(t) = a + tb; and
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— An objectivefunction F'(-) of aset of values;

Construct:

the set of back-projected lines from the image pointsto the X-ray source £(¢)“, where
Li(t) = 3§ + t(s“ — jf), then

Find:

Therotation R% and trandation t&, that minimizes F(p), where
pi=p(REPP +t5 , 57 +(s” = §f))

IS minimized.

The distance metric used here is the squared Euclidean distance between a point
z and aline L(t) = a + tb, and F(p), so finding the registration is a least-squares
minimization problem.

3.1 Finding Initial Estimates

We have previously established that the algorithm for finding initial estimatesthat Bedl
and McKay originally proposed [2], which was based on symmetriesin SO(3) orienta-
tions, isinadequate [13].

To find good initial estimates, consider the problem of registering three points to
three lines. Suppose thereis no symmetry in P, i.e., that by accident or design thereis
no rotation and/or reflection of 7 similar to the original. Pick three pointsin 7€ that
are not collinear and use these three back-projected lines to try to register with all non-
collinear 3-permutations of the n pointsin P¥. Theideais that, for each permutation,
we generate the (two) initial estimates by finding the orientation and position of the
triangle formed by the three points, say p? for i = 1... 3. For brevity, denote ng(t)
be the line formed by j and s, and let a; = L;c(t;) and a} = Ljc(t}) for somet;
and /.

Let the triangle with vertices a; be denoted as .A. There are two possible registra-
tions, so there are two such triangles .A. The problemisto find some a;,i = 1...3,
such that the triangle A is congruent to the triangle P formed by p;. To find the orienta-
tion of thetriangle, observethat if apoint a} isarbitrarily chosenthenthereisatriangle
A’ that contains a} and that is a scaled version of the registration A. Thetriangle A’ is
therefore similar to the triangle P, so

lp1 — p2|] _ lp1 — ps| _ lp2 — P3| (1)
lay — a3l llay —as] [l —as

Two constants, » and s can be defined as

_lpi—pl et —asl _ lpi— ol _ llat—a o
lpr—psll ~ lla — a5l T p2—pall  llab— ab]
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Rewriting Equations (@) with the terms from Equation (2) gives two equations of con-
straint for the points a, and aj:

2
f(th,t5) = r*llaf — a4]” — a) —a)|* =0 ©)

2 2
g(ts,t5) = s*[lah — aj|” — [la} — a)]|” =0

Partial derivatives of these two non-linear functions can be found, so standard opti-
mization methods for solving two eguations with two unknowns can be applied. In this
work the Levenberg-Marquardt algorithm was used. Because le_c (t) is defined such
that ¢ = 0 isat the source, and ¢ = 1 is on theimage plane, all ¢; are between 0 and 1.
If ¢} isfixed at 0.5, by using all combinations of 0 and 1 as initial valuesfor ¢, and ¢
two solutions were always found.

The registration A can be determined by scaling the solution A’ so that A is con-
gruent to P.

Two points, say a!, and a!,, and the source s form atriangle on the plane containing
the two lines Ljc and Ljc. We want to find the triangle Asa,a, that is similar to

Asala!, and ||a, — a,|| = ||p. — p.||- Thetwo similar trianglesyield the constraint
||S - au” - ||au — av”
s~ ~ Yt~ al] @
u u v

dFromtheline Ljc (t), it can be determined that

lau —aull - |Is — a,|
— =|ls— L;c(t,)|| = L 5
||S au” ||S Jg( U)H ||CL& o a{l)|| ( )
Expanding this equation and solving for ¢,, we find
o _llau—a-|s—ayl ©
u .
lai, —ayll-lls —gull

Using this agorithm, al ¢; can be found and thus the simplified problem is solved. We
call this algorithm the 3-point-line algorithm (3PL).

3.2 The3PLFLSRegistration Algorithm

For a 3-permutation M2 of the point set P there are two sets of approximate solu-
tions, RS and RS, that are found from 3PL . Each solution consists of three points that
lie on the back-projected lines. The transformations 7;% from M? to RS can be deter-
mined by any solution of the absolute-orientation problem [1, (7, [8]. Applying transfor-
mation 7;% to al pointsin P transforms the points to Q€. For each transformation,
the correspondenceis chosen by matching a point to the closest line.
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Unlike in ICP, this correspondence is now fixed for all subsequent iterationsE We
call thisthe Fixed Least Squares algorithm, abbreviated as FLS. Using ﬁg astheini-
tial estimate, the least-squares error between the points and their corresponding linesis
minimized by a L evenberg-Marquardt optimization. Thefinal solution isthe correspon-
dencethat givesthe least RMS error from FLS.

We call the registration algorithm that uses three point-line correspondences as ini-
tial estimates, and then fixes the correspondences for subsequent least-squares error
minimization, the 3PLFLS agorithm. Figure 2l summarizes this algorithm in pseudo-
code.

This algorithm is efficient because it is polynomial in the number of markers used.
For n points, there are 2n(n — 1)(n — 2) initia 3PL estimates to be computed. Be-
cause it would be uncommon to use a large number of fiducial markers, the number of
initial estimates is always small (even for 10 markers there are only 1440 initial esti-
mates). Because the optimization algorithm uses fixed correspondences, the computa-
tionally expensive nearest-neighbor calculation that tends to dominate | CP calculations
isavoided. If the structure of thefiducial pointsisknown beforehand it may be possible
to limit the number of Levenberg-Marquardt iterations, so the computation time can
indeed be seen to grow cubically with the number of fiducial markers.

4 Experimental Methods

The 3PLFL S algorithm was tested on fluoroscopic and portal images. The fluoroscopic
tests were conducted at Kingston General Hospital (Canada) and the portal tests were
conducted at Johns Hopkins University (USA). The fluoroscopic tests were performed
in conjunction with highly accurate independent 3D detection methods that provided
both a relative and an an absolute measurement of registration accuracy. The portal
images were evaluated with a relative accuracy measurement only.

4.1 Fluoroscopic Methods

The fluoroscopic tests were conducted on two single-plane C-arms (models BV 25 and
BV 26, Philips). Two objects, plastic models of a femur and tibia, were instrumented
with six 0.8 mm tantalum fiducial markers each. The location of the fiducial markers
were determined by Roentgen stereophotogrammetry and cross-validated with CT, as
we have previoudly reported [4]; the maximum diameter of the point sets was 72 mm.
Arrays of infrared light-emitting diodes (IRED’s) were attached to the C-arm and the
test object; the markers were contacted with an optically tracked probe (Optotrak 3020,
Northern Digital) and Horn’s algorithm was used to register the location of the markers
to the C-arm coordinate system viathe local IRED array.

The C-armswere calibrated using our previoudly reported methods[13]; theimage-
to-source distance was found to be approximately 900 mm for each C-arm. Images of
each test object were taken and the video signals from the C-arm were digitized directly

! The original ICP algorithm resel ects the correspondence in each iteration.
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Algorithm 3PLFLS
L6 — {Ljcll <i<n}
£s — {L c|i = i1,42,i3 where 3 are not collinear}
for MP = permutation of 3 pointsin PZ do
if MP iscollinear then
continue
end if
(RY,RS) — 3PL(ME, LS)
foreach RS do
75 — AOMPB RE)
Q¢ « Transform (7§, PP)
Cor(-) — correspondence between Q¢ and £€
(TS, €rms) «— FLS(Cor(PP), £C,TF)
if TS hasthe least RMS error then
Tg «— fg
BestCor(-) < Cor(-)
end if
end for
end for
(TS, €rms) < FLS(BestCor(P?), £L°,TF)
QB — Transform(T§, P?)
end algorithm

Fig.2. The 3PLFLS agorithm for finding correspondence and registration. Tgf =
AO(PF:, PF2) calculates the transformation using an absolute orientation solution
such that Tlff transformsapoint set P inframe I, to apoint set P2 inframe I,. The

function 3PL () cal culates the two solutions with the three-point-line back-projection al -

orithm.
|gnto a PC. The pose of each object was estimated with the accelerated |CP agorithm

and with the 3PLFL S algorithm; the ICP algorithm was initialized, as recommended by
Besl and McKay [2], from a set of 312 distinct poses. Registration accuracy was tested
by using the ground-truth data provided by the optical tracking system.

4.2 Portal-lmaging Methods

Portal-imaging presents significant challenges due to its relatively poor spatial reso-
lution and high X-ray energy. Pixels are large (0.9 mm) and the “hard” beam easily
penetrates small steel or tantalum objects, leaving no visible trace in the image.

The portal-imaging tests were conducted on a conventional radiotherapy linear ac-
celerator (Varian Systems). A plastic vertebral phantom was instrumented with sharp
metal screws of 9-10 mm length, gradually widening, with 3 mm diameter at the end.
We selected screws, rather than spherical objects, to better simulate actual clinical cir-
cumstances. The phantom was cased in arigid transparent plastic box that had a thin
cross-hair on the top. This arrangement allowed us to set the phantom box first in the
center of the CT gantry, then in the isocenter of the linear accelerator, using the laser
set-up mechanisms of the therapy device.
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The phantom was placed on the patient table and imaged from anominal AP view.
The gantry was then rotated 45° and imaged again. The phantom was slightly rotated
and trandlated, then the imaging protocol was repeated. The four imageswere processed
by manually selecting the center locations of the markerson the portal-imaging console.

5 Experimental Results

The fluoroscopic results were statistically indistinguishable for the two C-arms tested,
so the results were pooled. The | CP algorithm was deemed to havefailed if it converged
to apoint-line correspondencethat was known a priori to beincorrect. The performance
of results calculated by ICP and 3PLFLS are shown in Table[Dl Relative and absolute
errors of registration using 3PLFL S are shown in Table[2

Table 1. Performance of ICP and 3PLFLS on fluoroscopic images. n is the number of
fiducial markersinvolved; timeisin CPU seconds on a SUN Ultra 60. A registrationis
considered asfailed if the correspondence of the fiducial markersisincorrect.

Algorithm n=4 n==6

CPU Time|Failure Rate| CPU Time|Failure Rate
ICP 88.52 36.7% 154.58 0
3PLFLS 0.53 0 2.19 0

Table 2. Accuracy of registration for fluoroscopic images. 66 is the rotation error in
degrees, dd is the trandation error in millimeters. SD is the standard deviation of the
errors. MAX isthe maximum error.

Object| RMS Error Absolute Errors

56 (SD; MAX) | 6d (SD; MAX)
Femur]|0.10 (0.02/0.12)|0.86 (0.40; 1.75)|1.57 (0.77; 3.29)
Tibia |0.06 (0.02/0.09)[0.76 (0.42; 1.77)|1.40 (0.69; 3.40)

Table 3. Root-mean-square (RMS) errors, in millimeters, and angular errors, in de-
grees, of registration for portal images of an instrumented lumbar vertebral phantom.
For each pose of the phantom a portal image was taken at 0° and at 45° orientation of
the accelerator beam. The relative angular error is the estimated pose difference from

45°.
Phantom|RMS error, 0° image|RMS error, 45° image|Angular error
Pose 1 0.47 0.43 +1.44°
Pose 2 0.46 0.34 —0.66°

6 Discussion and Conclusions

We have devel oped an efficient and effective algorithm for registering a set of 3D points
toasingle 2D X-ray image. The algorithm is faster than the well known ICP algorithm
by more than afactor of 60. The algorithm makes use of geometric constraints that are
natural in the problem domain and exploits the combinatorics of point-line matching.
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Efficacy of the algorithm has been established on two fluoroscopic C-arms and one
portal imaging system.

Theerrorsin estimating the pose are extraordinarily small, given the difficulty of the
problem. The point sets were of only 70 mm in diameter, yet could be registered from
a single fluoroscopic image to within 2 mm absolute accuracy for an image-to-source
distance of over 900 mm. Thisresult includes all sources of error, including unwarping
of the fluoroscopic imaging physics, estimation of the 3D X-ray source location with
respect to the image, and estimation of the projected fiducial centroid in the image.
In particular, we found that we could estimate the pose within 0.5 mm in the plane
parallel to theimage, and that the trandational component normal to the image was the
primary contributor to the registration error.

This problem is much harder than the problems encountered in virtual fluoroscopic
navigation, where an instrument is tracked optoelectronically and then virtually super-
imposed on the image by performing forward cal culations of perspective projection. In
virtual navigation the error in locating the X-ray source location are effectively can-
celled by perspective, whereas here such cancellation is not inherent in the problem.
Cancellation does, however, occur if two point sets are tracked. In such a case therela
tive pose of the objects can be very accurately estimated, particularly in planes parallel
to the image.

The algorithm scales as a moderate polynomial in the number of markers. If there
are n markers, then the number of triplets of markers to be exhaustively searched is
O(n?®) complexity. If alarge number of markersis required by the surgical application,
aternative registration algorithms (such as geometric hashing [[15]) could be consid-
ered. However, the purpose of the proposed algorithm is to accurately solve the regis-
tration problem for surgical guidancein which there are not many markers. In particular,
the algorithm works very well when the number of markersis minimal (four) or nearly
minimal.

There are many potential clinical applications of single-image registration. The
technique is directly applicable to conformal radiotherapy, where the technique can
localize target anatomy that has been previoudly instrumented. For percutaneous RF
ablation of liver, radio-opague markers can be placed around a tumor and subsequently
be used in fluoroscopic guidance of an ablative instrument (the liver parenchyma is
relatively stiff and locally moves as a rigid body). For cancer in the pelvic region, the
pelvic bone can be instrumented and nearby soft tissues can potentially be treated per-
cutaneously. In these and other applications, the speed and convenience of single-image
registration may be able to improve the therapeutic outcome and improve the quality of
life of the patient.
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