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Rationale and Objectives. Four-dimensional (4D) computed tomography (CT) can be used in radiation treatment plan-
ning to account for respiratory motion. Current 4D CT techniques have limitations in either spatial or temporal resolution.
In addition, most of these techniques rely on auxiliary surrogates to relate the time of the CT scan to the patient’s respira-
tory phase. We propose a 4D CT method for lung applications to overcome these problems.

Materials and Methods. A set of axial scans are taken at multiple table positions to obtain a series of two-dimensional
images while the patient is breathing freely. Each two-dimensional image is registered to a reference CT volume. The de-
formation of the image with respect to the volume is used to synchronize the image with the respiratory cycle assuming
that there is no phase variation along the craniocaudal direction. The reconstructed 4D dataset is a series of deformable
transformations of the reference volume.

Results. A synthetic 4D dataset showed that the registration error is less than 5% of the image deformation. A swine
study showed that the algorithm can generate better image quality than the image sorting method. A respiratory-gated 4D
dataset showed that the algorithm’s result is consistent with the ground truth.

Conclusion. The algorithm can reconstruct good quality 4D images without external surrogates even if the CT scans are
acquired under irregular respiratory motion. The algorithm may allow for reduced radiation dose to the patient with a lim-
ited loss of image quality. Although the phase variation exists along the craniocaudal direction, the 4D reconstruction is
reasonably accurate.
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Lung cancer is the leading cause of cancer death of both
men and women, resulting in more deaths than prostate
cancer, breast cancer, and colon cancer combined in 2002
(1). Radiation therapy has been used to treat lung cancer
by delivering high-energy x-rays to destroy cancer cells.
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However, because of respiratory motion, accurate and
efficient radiation delivery is difficult. Four-dimensional
(4D) computed tomography (CT) is a technique that can
account for respiratory motion in treatment planning, al-
lowing for the reduction of target volume margin to
achieve increased tumor dose and decreased normal tissue
dose (2). Although the radiation dose to the patient from
CT scanning may be an issue, particularly if multiple 4D
datasets are considered; in general, the CT dose will be
much less than the treatment dose delivered during radia-
tion therapy. 4D CT may also be used to investigate the
motion correlation between the internal tumor and exter-
nal fiducials such as skin markers. The tumor position
could then be estimated during the treatment by tracking

the external fiducials. With sufficient 4D CT datasets, a
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respiratory model might also be constructed to parameter-
ize the respiratory motion.

Most 4D lung reconstruction algorithms reported in
the literature can be grouped into the following two ap-
proaches. The first approach requires controlling the
patient’s breath during image acquisition (3). The respira-
tory cycle is divided into several phases—usually 7–11.
The respiration is controlled in each phase using respira-
tory gating (4–6) while a three-dimensional (3D) CT vol-
ume is taken. A related technique is to use breathing
tracking strategies such as active breathing control (7–10)
to monitor the patient’s breath at each phase. The 4D
data acquired by this method have high spatial resolution,
but very poor temporal resolution. This low temporal
resolution limits its usefulness in analyzing the anatomic
motion.

The second approach does not try to monitor or con-
trol the patient’s breath. The patient is allowed to breath
freely on the CT table (3,11). The table is moved in small
increments and a set of continuous scans is taken at each
table position to cover at least one complete respiratory
cycle of the patient. Some external devices may be used
during the scan to synchronize the CT scan time with the
respiratory phase (11,12). After image acquisition, all the
free scan images are sorted into a sequence of 3D vol-
umes according to their respiratory phase and table posi-
tions. This method has high temporal resolution at
each table position. The major problem with this method
is that respiratory motion is not completely repeatable, so
the time stamp of the free scan image may not correlate
well with the regular respiratory motion. In such a case,
the image quality of the 3D data reconstructed at each
respiratory phase will be very poor. It is usually very
difficult to stitch these 3D volumes together into a 4D
dataset.

Unlike prior methods, we propose a new 4D lung re-
construction method that has good temporal resolution
and high reconstruction quality. In addition, our method
does not rely on any external gating or tracking devices
to synchronize the time of CT scan and the respiratory
phase. Therefore, problems caused by the discrepancy
between the respiratory motion and the auxiliary surro-
gates are avoided.

METHODS

Our 4D CT lung reconstruction method is illustrated in

Fig 1. First, a reference 3D CT volume is obtained under
breath hold. Next, a set of continuous CT scans is taken
at every table position to obtain a series of two-dimen-
sional (2D) images while the patient is breathing freely.
The 2D image series at every table position covers at
least one complete respiratory cycle. Using deformable
registration, each 2D image is registered to the reference
volume to estimate the displacement field of the 2D im-
age with respect to the reference volume. The respiration
signal is extracted from the displacement field of each 2D
image. This respiration signal is used to synchronize the
2D image series to the respiratory cycle at every table
position. After the synchronization, the displacement field
for the entire lung volume at every selected respiratory
phase is reconstructed, interpolated, and smoothed. The
4D lung images are reconstructed by a deformable trans-
formation of the reference volume for the entire respira-
tory cycle.

Registration of 2D Image to Reference
CT Volume

The deformable registration between a 2D slice and
the reference volume includes three key steps: lung
segmentation, local image registration, and propagation
of local image registration. Although the lung segmen-
tation is the first step of the 2D/3D registration, the
segmentation will be described in the end of this sec-
tion for a clearer presentation of the algorithm.

Local image registration.—To calculate the deforma-
tion of the 2D image with respect to the reference vol-
ume, we divide the 2D image into small overlapping disk
regions, and register each of the small regions piece by
piece to the reference volume. This algorithm is inspired
by the block matching algorithm (13) that is a standard

Figure 1. Four-dimensional computed tomography image acqui-
sition [adapted from (11)].
technique for object tracking and motion analysis in video
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sequences (14). The local registration algorithm is based
on minimizing the zero mean sum of squared differences
(ZMSSD) (15) between a small region in the 2D image
and a corresponding region in the reference volume. The
size of the analysis region is mainly an empirical choice,
which affects the accuracy, robustness, and computation
time of the algorithm. We set the radius of the analysis
region to be 20 pixels in our implementation. Several
models, including rigid-body, affine, quadratic, and cubic
transformations, have been tested to model the deforma-
tion between the 2D region and the 3D region. It is ob-
served that the quadratic transformation usually results in
the smallest residual error under the selected region size.
Equation 1 shows the formula of quadratic transforma-
tion.
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where (x,y,z) is a voxel’s position in a 2D image region,
T(x,y,z,�) is the voxel’s position in the reference volume,
and � �{a00, a01, . . ., a29} is the parameter vector to be
estimated.

The quadratic model allows the 2D region to be
warped and shifted in 3D to match the lung anatomy of
the reference volume. Thirty parameters need to be esti-
mated for each local registration while the objective func-
tion is optimized. To increase the robustness of the local
registrations, an affine transformation is applied before
using the quadratic model to estimate some of the param-
eters {a06 � a09, a16 � a19, a26 � a29}. The remaining
parameters are set to zero to generate a starting point for
the quadratic model-based optimization. Equation 2 shows
the objective function of the local registration. The
Gauss-Newton method is used to solve the optimization

problem.
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where I is the 2D image, V is the reference volume, and
h is the slice thickness of the 2D image as shown in

Fig 2. Îmean and V̂mean are the average intensities of a 2D
region and its correspondence in 3D. More details about
the local registration using an affine model have been
described previously (16).

Propagation of local image registration.—Because the
ZMSSD registrations are performed locally, there is no
guarantee that all the registrations converge correctly. A
global regularization of the local registrations is necessary
to remove outliers. In an example shown in Fig 3, the
regions are partially overlapped on each other. Because
pixel p is included in all the disk regions A0, A1, and
A2, the deformation of pixel p can be calculated from
every one of these regions. As shown in Eq 3, the final
deformation of pixel p is the weighted average of all de-
formations obtained from the overlapped regions.

d̂(x, y) � �
k

rkckgkwk (x, y) dk (x, y) (3)

where dk is the pixel displacement obtained from the kth

region; d̂ is the weighted average of the displacement;

Figure 2. Local image registration.
and rk is a function of the residual error of the ZMSSD
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similarity measure of the kth region. rk will be assigned a
large value for small residual error, and vice versa. rk will
be zero if the residual error of a region is above a thresh-
old. ck is a function of the registration consistency in the
overlapping area between the current region k and the
regions that have already been registered. ck will be large
if the consistency is high; otherwise, ck will be small. ck

will be zero if the difference between the current registra-
tion results and the previous registration results is too
large. The assumption is that the results from previous
registrations are more likely to be correct, because they
are the weighted averages of many local registrations. wk

is a Gaussian window function that is centered on the
region k, giving the registration results of central pixels a
larger weight. This is because the deformable model fits
better in the highly clustered central area than the less
clustered peripheral areas. For the same reason, we use a
circular region instead of a classical rectangular region for
local registrations. As a result, Eq. (3) filters out failed
and bad registrations and assigns large weight to good
registrations. Unlike other registration techniques going
from coarse to fine resolution, this registration goes from
local to global. The algorithm iteratively propagates its
local registrations, allowing the deformation of regions with-
out enough texture information to be correctly estimated.
Equation 3 also globally regularizes the local registrations,
smoothing the displacement field of the 2D slice.

In this propagation method, pixels computed earlier
have larger effects on the algorithm than pixels computed
later because the results of earlier local registrations are
used to initialize and evaluate later registrations. To im-
prove the robustness of early registrations, every step of

Figure 3. Propagation of local registration.
the propagation is performed on the boundary of the
propagated area where the analysis region has the stron-
gest texture information.

Lung selgmentation.—The region-based algorithm as-
sumes the pixels of the region to have approximately the
same type of motion. It is necessary that all the pixels in
the region are lung pixels. If the region includes other
pixels such as heart pixels (Fig 4a, circled region 2), the
registration is prone to fail, because the selected deforma-
tion models cannot explain the pixel motion of the analy-
sis window. For the same reason, the region cannot have
chest wall pixels (Fig 4a, circled region 1), nor can the
region have pixels from both the left and right lungs
(Fig 4a, circled region 3). Therefore, accurate lung seg-
mentation is necessary before the registration, and the left
and right lungs should be separated in the 2D images.

We adopted the techniques of Hu (17) to automatically
segment the lungs in the 2D image. Base on their work,
additional morphologic image processing is executed on
the lung area to keep the small to middle blood vessels in
the lungs. Extra margin is also introduced in the heart-
lung boundary to exclude the artifact caused by the car-
diac motion. The result of lung segmentation is shown in
Fig 4b. It should be noted that this segmentation algo-
rithm does not separate different lung lobes. Therefore, it
is possible for an analysis region to include pixels from
different lobes. If discontinuous motion is large between
lung lobes, the local registrations near the lobe interface
may fail or generate large registration error. In that case,
the algorithm will suppress the effect of these local regis-
trations with a small rk in Eq. (3), and rely on the regis-

Figure 4. (a) Undesired regions: 1) both lung pixels and chest-
wall pixels are included; 2) both lung pixels and heart pixels are
included; 3) both left and right lungs are included; and 4) other
non-lung pixels are included. (b) The result of lung segmentation.
Note that the blood vessels are preserved; the heart and chest-
wall are removed; the left and right lungs are separated; and the
marginal pixels are removed from the heart-lung boundary.
tration results of the neighboring regions.
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4D Lung Reconstruction
After all the 2D slices are registered to the reference

volume, the average displacement of lung pixels of each
slice is calculated, yielding a 3D vector that represents
the gross motion of the slice with respect to the reference
volume. For a 2D image series taken at the same table
position while the patient is breathing freely, a sequence
of gross motion vectors can be obtained. This vector se-
quence has phase information of respiratory motion and
therefore can be used to synchronize the 2D image series
with the respiratory cycle. As an example, if a 2D image
has the smallest gross motion among a 2D image series
obtained at the same table position, this image can be
considered to have (approximately) the same respiratory
phase as the reference volume and vise versa.

The synchronization procedure is performed as fol-
lows. First, we correlate two gross motion sequences at
every two adjacent table positions. Because lung deforma-
tion is continuous, this correlation is conducted between
two similar gross motion vectors with a time shift. There-
fore, the correlation is reliable. The correlation can be
calculated using the following formula:

S � arg max
j

�
k�0

N�1

��xk�x′
j�k � �yk�y′

j�k � �zk�z′
j�k� (4)

where N is the total number of frames to be correlated;
(�xk, �yk, �zk) is gross motion of the kth image frame in
one 2D series; (�xk

=, �yk
=, �zk

=) is gross motion of the kth

image frame in another 2D series obtained at an adjacent
table position; and S is the number of frame shifts be-
tween the two image sequences. Temporal interpolation
can be used if the frame rate of the 2D scan is low. By
repeating this correlation at all table positions, all the 2D
series can be synchronized. The assumption is that lung
areas at different table positions reach their peak motion
at the same time. In other words, there is no phase varia-
tion of respiratory motion along the craniocaudal direc-
tion. This assumption will be addressed later in the exper-
iment section of this article. After all 2D series are syn-
chronized, the average length of the respiratory cycle is
estimated. For 2D series obtained in irregular respiratory
cycles, the length of the 2D series may need to be cut or
extended near the end-expiration to meet the average
length of the respiratory cycle. Because respiratory mo-
tion changes very little near the end-expiration, the im-
pact of this approximation on the result is small.

The motion vector of each 2D image is three-dimen-

sional. It is desirable to reduce it to one dimension to
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represent the respiratory phase. Therefore, the principal
axis of the motion trajectory is calculated using principal
component analysis. The one-dimensional respiration sig-
nal can be extracted by projecting the average motion on
the principal axis. Figures 5a and 5b show the normalized
respiration signals of two CT fluoroscopy image series
obtained in a swine study at two adjacent table positions
with an interval of 4 mm. It can be observed that the CT
fluoroscopy scan time of the two sequences was different
with respect to the respiratory cycle. The two dots on
the peaks of the respiration signals show the result of
synchronization.

After all the 2D image series are synchronized, the 4D
lung can already be reconstructed by sorting the 2D im-
ages (9) according to their table positions and respiratory
phases. However, because the 2D images come from dif-
ferent respiratory cycles where respiratory motion may
not be completely reproducible, the 4D reconstruction by
sorting 2D images can have very poor image quality.
Especially in the coronal and sagittal views, fuzzy edges
are usually observed.

To improve the image quality, we use a different ap-
proach to reconstruct the 4D dataset. First, we reconstruct
the displacement fields of the lungs at every respiratory
phase. This step only needs very little computation time
because the displacement field of every 2D image has
already been obtained from the deformable registration.
The deformation of the entire lung volume is calculated
by combining the 2D images’ displacement fields accord-
ing to their table positions and respiratory phases.

The resulting displacement field from the first step re-
flects deformation of the lungs at a respiratory phase.

Figure 5. Normalized respiration signals at two adjacent table
positions extracted from swine study.
This displacement field may not be smooth along the
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craniocaudal direction because it is obtained from multi-
ple respiratory cycles that may not be exactly repeatable.
Therefore, our second step is to smooth the displacement
field in the craniocaudal direction (eg, using a Gaussian
filter). It should be noted that this smoothing operation is
not applied on image values; therefore, the reconstructed
4D data will not be degraded. The effect of the smooth-
ing operation is similar to “averaging” irregular respira-
tory motion obtained from different respiratory cycles.
Additionally, if the 2D scan covers more than one respi-
ratory cycle at a table position, it is desirable to obtain an
average displacement field for the table position to allevi-
ate the degradation of irregular respiration on 4D CT.
After the smoothing operation, the displacement field of the
entire lung volume is obtained by interpolating the smoothed
displacement fields of 2D slices in the craniocaudal direction
(using B-spline [18] or linear interpolation).

Finally, we compute the 3D volume at any respiratory
point by a deformable transformation of the reference
volume. As a feature of the algorithm, the spatial resolu-
tion of the constructed 4D data is determined by the reso-
lution of the reference volume.

RESULTS

Three experiments were conducted to validate the al-
gorithm. These experiments were based on a synthetic 4D
CT, a swine study, and a clinical 4D CT, respectively.

Experiments on Synthetic 4D CT
The goal of the first experiment is to validate the accu-

racy of the deformable registration between a 2D image
slice and the reference CT volume. A synthetic 4D data-
set was used in the experiment.

The synthetic 4D data was contributed by Siemens
Corporate Research and generated from two lung volumes
obtained at end-inspiration and end-expiration, respec-
tively. The two volumes were registered using an inde-
pendent deformable registration algorithm. The displace-
ment field between the two volumes was interpolated
along the time axis such that the trajectory of each pixel
is a 3D curve in space instead of a straight line (19). As
shown in Fig 6, the resulting 4D data were used as the
ground truth to validate the 4D algorithm. The syn-
thetic 2D free scan image series was obtained by sam-
pling the 4D data at a selected table position. With the
2D image series and the lung volume at the end expira-

tion as the reference volume, we ran the algorithm to
recover the lung deformation. The pixel size of both
the preoperative CT volume and the 2D images was
0.74 mm. The slice thickness of the preoperative CT
volume was 1.25 mm and 3.75 mm for the synthetic
2D free scan images. The results were first compared
with the ground truth to validate the deformable 2D/3D
registration.

Figure 7 shows the deformation magnitude of a 2D
image taken at end-inspiration when the 2D image has the
largest deformation with respect to the reference CT vol-
ume. As shown in Fig 7, most of the poor registrations
happen on the boundary pixels of the lungs. This problem
has three causes. First, for the region-based algorithm, the
registration accuracy is usually higher for the pixels near
the center of the analysis region; the boundary pixels of
lung are usually far from the center of the analysis re-
gion. Second, the boundary pixels (especially the bound-
ary pixels near the anterior lung) have larger deformation
than the average. Third, the areas near the lung boundary
often have little texture information, which may not be
enough for the local image registration.

Figure 8 shows the average registration error and the
standard deviation of the error as opposed to gross slice
motion. The maximum average error is below 0.6 mm, or
5% of gross slice motion (for large respiratory motion).
It can be observed that both the registration error and the
standard deviation increase as the deformation of the
2D slice increases, suggesting that the deformable model
has the better performance for smaller deformation of
the lungs.

Experiments on Swine Study
The second experiment was a swine study as part of

an approved animal protocol. This study was done at
Georgetown University Medical Center on a Siemens
Somatom Volume Zoom four-slice CT/CT fluoroscopy

Figure 6. Validation of two-dimensional/three-dimensional de-
formable registration.
scanner. The reference volume was obtained at end-expi-
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ration using a 1-mm slice thickness. The animal was me-
chanically ventilated, and during the image acquisition the
ventilator was turned off and the animal was temporarily
paralyzed to minimize any breathing artifacts. The 2D
image series were acquired using CT fluoroscopy with a
sample rate of 6 Hz and a slice thickness of 4 mm. Ten
2D image series were acquired. Figures 9a and 9b show
the reconstruction results at end of inspiration, which is
the respiratory phase of the maximum deformation with
respect to the reference volume. As shown in the figures,
the reconstruction result of our algorithm is much
smoother compared with the image-sorting method and
less blurred compared with the image-sorting method with
Gaussian smoothing.

Experiments on Respiratory Gated 4D CT
The main purpose of the third experiment was to test

Figure 7. (a) Displacement magnitude of a two-dimensional imag
limeters. (b) Magnitude of registration error in millimeters.

Figure 8. Registration error and standard deviation vs. magni-
tude of gross slice motion.
the consistency between our algorithm and other 4D CT
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algorithms. A clinical 4D CT dataset was used as the
ground truth, which included 10 CT volumes obtained at
10 respiratory phases using respiratory gating. The CT
volume at end-expiration was selected as the reference
volume with a slice thickness of 2 mm. The 4D dataset
was then resliced with 6-mm slice thickness at a series
of table positions to simulate 2D image time sequences.
Each 2D image was registered to the reference volume
to obtain the displacement field as an example shown in
Fig 10.

Because the real 4D CT dataset was acquired in 10
different respiratory phases, the reslicing operation at
each table position yielded a 2D series of 10 images asso-

th respect to the reference computed tomography volume in mil-

Figure 9. Coronal and sagittal views of four-dimensional recon-
struction in a swine study. The top image of (a) and the left image
of (b) are results of our method. The middle images of (a) and
(b) are results of the image sorting method. The bottom image of
(a) and the right image of (b) are results of the image sorting
method with Gaussian smoothing.
e wi
ciated with these respiratory phases. Figure 11b shows the



w.

Academic Radiology, Vol 13, No 9, September 2006 LUNG DEFORMATION ESTIMATION
average displacements of two 2D image series obtained at
the upper lung and the lower lung as labeled in Fig 11a.
Our algorithm was used to recover the 4D data between
the two slices. It can be seen that the respiratory phase
at the lower lung lagged behind the upper lung (Fig 11b).
The deformation of other lung slices also confirm that
phase variation of respiratory motion exists along the
craniocaudal direction, meaning that the average motion
of each 2D image may not be accurate to synchronize 2D
image sequences at different table positions. To estimate
the impact of the phase variation, the 4D reconstruction
result of our algorithm was compared with the original
respiratory-gated 4D data. Figure 11c shows a coronal

Figure 10. Displacement field of a two-dimensional slice. Note th
(b) Y component. (c) Z component. (d) Slice position in coronal vie
image of the 4D data reconstructed at end inspiration as-
suming that all lung slices reach their maximum deforma-
tion at the same time.

The respiratory-gated 4D data shown in Fig 11a was
used as the ground truth to validate our algorithm. The
difference between the ground truth and the reconstructed
data is shown in Fig 11e, which consists of both the reg-
istration error and the phase variation error. It can be ob-
served from the difference image that many of the major
airways and blood vessels were removed, meaning that
the 4D reconstruction remains reasonably accurate under
phase variation of respiratory motion.

Another goal of the third experiment was to evaluate
the effect of the spatial scan interval to our algorithm.

e scales are different for each component. (a) X component.
at th
Because the algorithm interpolates the displacement field
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between consecutive table positions, larger scan interval
can reduce the number of 2D image scans and thus lower
the radiation dose to the patient. At the same time,
sparser scans along the CT table may also degrade the
accuracy of the reconstructed 4D data. To validate the
impact, we compared the reconstruction results obtained
with two different scan intervals: 10 mm (Fig 11c) and
20 mm (Fig 11d). These two reconstructed images
were then subtracted from the ground truth image
(Fig 11a). The reconstructed 10-mm scan (Fig 11e)
shows smoother lung boundaries than the result of
20-mm scan (Fig 11f).

The numerical results of Fig 11 are shown in Table 1.
Because the 2D images are resliced from the real 4D
data, their true synchronization is known. Although our
algorithm cannot obtain this perfect synchronization in
reality, the residual errors of the perfect synchronization
were used in our experiment as a baseline for compari-

Figure 11. (a) A coronal slice of the ground truth four-dimension
per lung and a slice at the lower lung labeled in (a). (c) A coronal
interval. (d) A coronal slice of the reconstructed four-dimensional
The difference of (a) and (d).
son. The last row of the table shows the absolute differ-
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ence between the reference volume and the end-inspira-
tion volume without registration.

Table 1 shows that the results of our synchronization
(the approximated synchronization) and the perfect syn-
chronization are close. There is no significant difference
between the residual errors of the 10-mm scan and the
20-mm scan, suggesting that 4D CT data may be able to
be reconstructed with reasonable accuracy by sparsely
sampling CT table positions to reduce the radiation dose
to the patient during image acquisition.

DISCUSSION

This article presents a new methodology to reconstruct
a 4D lung image from a set of 2D CT scans and a refer-
ence CT volume. The temporal resolution of the method
is high and the reconstruction provides good-quality im-

ta at end-inspiration. (b) Respiration signals of a slice at the up-
of the reconstructed four-dimensional data with 10-mm scan
with 20-mm scan interval. (e) The difference of (a) and (c). (f)
al da
slice
data
ages. Based on a synthetic CT data set, the average regis-
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tration error was less than 5% of the average lung defor-
mation. Results from a swine study also showed that bet-
ter image quality can be obtained using the algorithm
instead of the image sorting method.

The algorithm is software-based. It does not need any
auxiliary surrogates to synchronize image scans with the
respiratory phase. The image reconstruction quality of the
algorithm is high even under irregular respiratory motion.
The lesion’s trajectory can be obtained automatically. The
algorithm may also allow for a reduction in the radiation
dose to the patient by sparsely scanning CT table posi-
tions with a very limited loss of image quality.

One drawback of the algorithm is that it is time con-
suming. It takes several minutes to register a 2D image
slice to the reference volume, depending on the size of
the lung area in the image. However, it should be noted
that the algorithm can reconstruct a 4D subvolume by
performing local registrations around the tumor, which
can greatly reduce the computing time. The algorithm’s
architecture also allows it to be implemented on a parallel
processing machine, if further improved processing speed
is needed. Another limitation of the algorithm is that it
cannot analyze respiratory motion in the most superior
and inferior of the lungs. Because the deformable regis-
tration relies on texture information of the lungs, if soft
tissue (eg, the diaphragm) does not have much texture
under CT, the algorithm cannot register it when it moves
in and out of the 2D axial slice.

Although the algorithm can be affected by phase varia-
tion of respiratory motion, the algorithm still showed rea-
sonable accuracy in comparison to a respiratory-gated 4D
dataset. Because respiratory motion of tumors is no more
than a few centimeters in the craniocaudal direction, the
phase variation can usually be ignored in treatment plan-
ning. However, the phase variation may become an im-
portant issue if 4D CT is used to assist real-time motion
compensation, because small temporal errors may intro-
duce large spatial errors depending on the speed of respi-

Table 1
Residual Errors Between the Reference Volu
units (HU) per Voxel Under Two Scan Interva

Scan Interval

Average residual error under perfect synchroniz
Average residual error under approximated sync
Initial volume difference (without deformable reg
ratory motion.
The algorithm was only tested on single-slice 2D scans
in our experiments. The algorithm can be easily extended
for use with multislice CT. Because multislice CT pro-
vides more texture information to the local region regis-
tration, this may result in higher accuracy and better ro-
bustness of the algorithm. Additionally, if two multi-
slice image scans at two adjacent table positions are
partially overlapped, the phase variation error can be
accounted for by registering (or synchronizing) the
overlapped slices.

One question raised by this research is the optimal
number of respiratory phases (or temporal samples) for
the 4D CT dataset. Intuitively, the number of respiratory
phases should be a tradeoff between the resolution of the
4D dataset and the radiation dose to the patient. In terms
of the resolution, the number of temporal samples can be
determined by the maximum speed of respiratory motion.
Therefore, the inspiration phase may need more samples
than the expiration phase, and the lower lung may need
more temporal samples than the upper lung. The number
of temporal samples also depends on prior knowledge of
respiratory motion. If the trajectory of each lung voxel
can be modeled (eg, as a straight line), very few temporal
samples will be needed.
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