Publications
Elkind, Emese; Tun, Aung Tin; Radcliffe, Olivia; Connolly, Laura; Davison, Colleen; Purkey, Eva; Mousavi, Parvin; Fichtinger, Gabor; Thornton, Kanchana
2024 Canadian Conference on Global Health, Canadian Association for Global Health, 2024.
@conference{Elkind2024b,
title = {Enhancing healthcare access by developing low-cost 3D printed prosthetics along the Thai-Myanmar border},
author = {Emese Elkind and Aung Tin Tun and Olivia Radcliffe and Laura Connolly and Colleen Davison and Eva Purkey and Parvin Mousavi and Gabor Fichtinger and Kanchana Thornton
},
url = {https://labs.cs.queensu.ca/perklab/wp-content/uploads/sites/3/2024/10/EElkind_CCGH2024.pdf},
year = {2024},
date = {2024-10-25},
urldate = {2024-10-25},
booktitle = {2024 Canadian Conference on Global Health},
publisher = {Canadian Association for Global Health},
abstract = {Background/Objective
Inadequacies in the Burmese healthcare system, heightened by the 2021 military coup of the civil war in Myanmar and the COVID-19 pandemic, have driven thousands of refugees to Thailand seeking medical aid. Without immigration status, these refugees, especially those who have experienced limb loss, are challenged by the inability to receive healthcare. Burma Children Medical Fund (BCMF, www.burmachildren.com) based in Mae Sot, Tak, Thailand focuses on funding underserved Burmese communities’ medical treatment and providing support services.
Prosthetics in lower-income countries are usually passive, therefore, patients cannot fully perform their daily functions, impacting their abilities to work and affecting family caretakers. BCMF aims to make body-powered prosthetics that work best in low-resource settings using open-source designs, which only allow for fixed hand positions. The usage of prosthetic arms depends heavily on their functionality and comfort. Patients are more likely to consistently use prosthetics if it aids them in returning to normalcy and reducing family burdens. My objective is to design an interchangeable hand to enable critical rotational movements.
Methodology
The BCMF prosthetics project makes custom-fitted, low-cost, 3D-printed prostheses. BCMF uses open-source prosthetic models such as the Kwawu Arm 2.0, which provides an OpenSCAD (openscad.org) file for adjusting the model to the recipient's measurements. To maintain BCMF’s workflow, the interchangeable wrist model was created using the 3D design software, Autodesk Fusion 360, and designs from NIOP Q-C v1 and v2 Quick-Connect Wrist. The wrist was merged onto the Kwawu Arm, printed, assembled, and tested. This is an iterative process where patient feedback ensures the prosthetics cater to the diverse needs of the recipients.
Results
Since the launch of the prosthetics project in 2019, BCMF has provided 3D-printed prosthetics to 76 patients. The interchangeable hand provides a solution to many patients' everyday activities and can rotate the hand 360 degrees.
Conclusions
This project provides a low-cost solution to healthcare challenges in the context of poly-crisis experienced in Myanmar, enhancing the resilience and adaptability of affected refugee communities.
Relevance to Sub-Theme
This presentation aligns with sub-theme 2 by developing and testing methods to improve healthcare access and quality in areas affected by war, migration, poverty, and racial disparities.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Background/Objective
Inadequacies in the Burmese healthcare system, heightened by the 2021 military coup of the civil war in Myanmar and the COVID-19 pandemic, have driven thousands of refugees to Thailand seeking medical aid. Without immigration status, these refugees, especially those who have experienced limb loss, are challenged by the inability to receive healthcare. Burma Children Medical Fund (BCMF, www.burmachildren.com) based in Mae Sot, Tak, Thailand focuses on funding underserved Burmese communities’ medical treatment and providing support services.
Prosthetics in lower-income countries are usually passive, therefore, patients cannot fully perform their daily functions, impacting their abilities to work and affecting family caretakers. BCMF aims to make body-powered prosthetics that work best in low-resource settings using open-source designs, which only allow for fixed hand positions. The usage of prosthetic arms depends heavily on their functionality and comfort. Patients are more likely to consistently use prosthetics if it aids them in returning to normalcy and reducing family burdens. My objective is to design an interchangeable hand to enable critical rotational movements.
Methodology
The BCMF prosthetics project makes custom-fitted, low-cost, 3D-printed prostheses. BCMF uses open-source prosthetic models such as the Kwawu Arm 2.0, which provides an OpenSCAD (openscad.org) file for adjusting the model to the recipient's measurements. To maintain BCMF’s workflow, the interchangeable wrist model was created using the 3D design software, Autodesk Fusion 360, and designs from NIOP Q-C v1 and v2 Quick-Connect Wrist. The wrist was merged onto the Kwawu Arm, printed, assembled, and tested. This is an iterative process where patient feedback ensures the prosthetics cater to the diverse needs of the recipients.
Results
Since the launch of the prosthetics project in 2019, BCMF has provided 3D-printed prosthetics to 76 patients. The interchangeable hand provides a solution to many patients' everyday activities and can rotate the hand 360 degrees.
Conclusions
This project provides a low-cost solution to healthcare challenges in the context of poly-crisis experienced in Myanmar, enhancing the resilience and adaptability of affected refugee communities.
Relevance to Sub-Theme
This presentation aligns with sub-theme 2 by developing and testing methods to improve healthcare access and quality in areas affected by war, migration, poverty, and racial disparities.
Inadequacies in the Burmese healthcare system, heightened by the 2021 military coup of the civil war in Myanmar and the COVID-19 pandemic, have driven thousands of refugees to Thailand seeking medical aid. Without immigration status, these refugees, especially those who have experienced limb loss, are challenged by the inability to receive healthcare. Burma Children Medical Fund (BCMF, www.burmachildren.com) based in Mae Sot, Tak, Thailand focuses on funding underserved Burmese communities’ medical treatment and providing support services.
Prosthetics in lower-income countries are usually passive, therefore, patients cannot fully perform their daily functions, impacting their abilities to work and affecting family caretakers. BCMF aims to make body-powered prosthetics that work best in low-resource settings using open-source designs, which only allow for fixed hand positions. The usage of prosthetic arms depends heavily on their functionality and comfort. Patients are more likely to consistently use prosthetics if it aids them in returning to normalcy and reducing family burdens. My objective is to design an interchangeable hand to enable critical rotational movements.
Methodology
The BCMF prosthetics project makes custom-fitted, low-cost, 3D-printed prostheses. BCMF uses open-source prosthetic models such as the Kwawu Arm 2.0, which provides an OpenSCAD (openscad.org) file for adjusting the model to the recipient's measurements. To maintain BCMF’s workflow, the interchangeable wrist model was created using the 3D design software, Autodesk Fusion 360, and designs from NIOP Q-C v1 and v2 Quick-Connect Wrist. The wrist was merged onto the Kwawu Arm, printed, assembled, and tested. This is an iterative process where patient feedback ensures the prosthetics cater to the diverse needs of the recipients.
Results
Since the launch of the prosthetics project in 2019, BCMF has provided 3D-printed prosthetics to 76 patients. The interchangeable hand provides a solution to many patients' everyday activities and can rotate the hand 360 degrees.
Conclusions
This project provides a low-cost solution to healthcare challenges in the context of poly-crisis experienced in Myanmar, enhancing the resilience and adaptability of affected refugee communities.
Relevance to Sub-Theme
This presentation aligns with sub-theme 2 by developing and testing methods to improve healthcare access and quality in areas affected by war, migration, poverty, and racial disparities.
Elkind, Emese; Barr, Keiran; Barr, Colton; Moga, Kristof; Garamvolgy, Tivadar; Haidegger, Tamas; Ungi, Tamas; Fichtinger, Gabor
Modifying Radix Lenses to Survive Low-Cost Sterilization: An Exploratory Study Conference
Imaging Network of Ontario (ImNO) Symposium, Imaging Network of Ontario (ImNO) Symposium, 2024.
@conference{Elkind2024,
title = {Modifying Radix Lenses to Survive Low-Cost Sterilization: An Exploratory Study},
author = {Emese Elkind and Keiran Barr and Colton Barr and Kristof Moga and Tivadar Garamvolgy and Tamas Haidegger and Tamas Ungi and Gabor Fichtinger},
url = {https://labs.cs.queensu.ca/perklab/wp-content/uploads/sites/3/2024/10/EmeseElkindImNO2024-2.docx},
year = {2024},
date = {2024-03-19},
urldate = {2024-03-19},
booktitle = {Imaging Network of Ontario (ImNO) Symposium},
publisher = {Imaging Network of Ontario (ImNO) Symposium},
abstract = {INTRODUCTION: A major challenge with deploying infrared camera-tracked surgical navigation solutions, such as NousNav [1], in low-resource settings is the high cost and unavailability of disposable retroreflective infrared markers. Developing an accessible method to reuse and sterilize retroreflective markers could lead to significant increase in the uptake of this technology. As none of the known infrared markers can endure standard autoclaving and most places do not have access to gas sterilization, attention is focused on cold liquid sterilisation methods commonly used in laparoscopy and other optical tools that cannot be sterilized in a conventional autoclave.
METHODS: We propose to modify NDI Radix™ Lens [1], single-use retroreflective spherical marker manufactured by Northern Digital, Waterloo, Canada. Radix lenses are uniquely promising candidates for liquid sterilization given their smooth, spherical surface. This quality also makes them easier to clean perioperatively compared to other retroreflective infrared marker designs. Initial experiments show that liquid sterilization agents degrade the marker’s retroreflective gold coating (Fig. 1). Hence the objective of this project is to develop a method to protect the Radix Lenses with a layer of coating material that does not allow the sanitizing agent to degrade the coating to enable the lens to survive multiple sanitation cycles while retaining sufficient tracking accuracy. We employed two cold liquid sterilisation agents, household bleach which is a common ingredient of liquid sterilisation solutions and Sekusept™ Aktiv (Ecolab, Saint Paul, MN, USA), which is widely known for sterilizing laparoscopy instruments. Store-bought nail polish and Zink-Alu Spray were used to coat the lenses. Data were obtained by recording five tests each with five rounds of sterilization, each tested with six trials, for a total of 150 recordings. The five tests were as follows: 1) Radix lens coated with nail polish and bleached, 2) uncoated and bleached, 3) coated with nail polish and sanitised, 4) uncoated and sanitised, and 5) coated with Zink-Alu Spray and sanitised. To assess the impact of the sterilization on the lens’s fiducial localization error, two metal marker frames equipped with four sockets designed for the Radix lenses were used. The reference marker frame was secured to a flat table while the other marker frame moved along a fixed path on the table. The position and orientation of the marker clusters were streamed into 3D Slicer using the Public Library for Ultrasound Toolkit (PLUS). A plane was then fit to the recorded marker poses in 3D Slicer using Iterative Closest Point and the marker registration error was computed. Distance from the camera, angle of view, and distance from the edges of the field of view were held constant.
RESULTS: With each round of sterilization, the error of coated lenses was lower than the unprotected lenses, and the error showed a slightly increasing trend (Fig. 2). The lenses appeared fainter in the tracking software the lenses appeared fainter while all lenses remained trackable and visible despite the significant removal of reflective coating.
When reflective coating was fully rubbed off the lenses, the tracking software could still localize the markers; however, the lenses did appear much fainter in the tracking software. We observed that the reflective coating rubs off the lens in routine handling, and recoating with Zink-Alu spray can partially restore marker visibility. Using protective nail polish coating prevented the reflective coating from rubbing off altogether.
CONCLUSIONS: This exploratory study represents a promising step toward achieving low-cost sterilization of retroreflective infrared markers. Studies with the NousNav system need to be undertaken to measure the extent of degradation in tracking accuracy is tolerable as a side effect of marker sterilization. Before using coated Radix lenses on human subjects, it must be verified that the protective coating (common nail polish in our study) is fully biocompatible and remains undamaged by the cold sterilization agent (Sekusept™ Aktiv in our study.)
REFERENCES: [1] NousNav: A low-cost neuronavigation system for deployment in lower-resource settings, International Journal of Computer Assisted Radiology and Surgery, 2022 Sep;17(9):1745-1750. [2] NDI Radix™ Lens (https://www.ndigital.com/optical-measurement-technology/radix-lens/) },
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
INTRODUCTION: A major challenge with deploying infrared camera-tracked surgical navigation solutions, such as NousNav [1], in low-resource settings is the high cost and unavailability of disposable retroreflective infrared markers. Developing an accessible method to reuse and sterilize retroreflective markers could lead to significant increase in the uptake of this technology. As none of the known infrared markers can endure standard autoclaving and most places do not have access to gas sterilization, attention is focused on cold liquid sterilisation methods commonly used in laparoscopy and other optical tools that cannot be sterilized in a conventional autoclave.
METHODS: We propose to modify NDI Radix™ Lens [1], single-use retroreflective spherical marker manufactured by Northern Digital, Waterloo, Canada. Radix lenses are uniquely promising candidates for liquid sterilization given their smooth, spherical surface. This quality also makes them easier to clean perioperatively compared to other retroreflective infrared marker designs. Initial experiments show that liquid sterilization agents degrade the marker’s retroreflective gold coating (Fig. 1). Hence the objective of this project is to develop a method to protect the Radix Lenses with a layer of coating material that does not allow the sanitizing agent to degrade the coating to enable the lens to survive multiple sanitation cycles while retaining sufficient tracking accuracy. We employed two cold liquid sterilisation agents, household bleach which is a common ingredient of liquid sterilisation solutions and Sekusept™ Aktiv (Ecolab, Saint Paul, MN, USA), which is widely known for sterilizing laparoscopy instruments. Store-bought nail polish and Zink-Alu Spray were used to coat the lenses. Data were obtained by recording five tests each with five rounds of sterilization, each tested with six trials, for a total of 150 recordings. The five tests were as follows: 1) Radix lens coated with nail polish and bleached, 2) uncoated and bleached, 3) coated with nail polish and sanitised, 4) uncoated and sanitised, and 5) coated with Zink-Alu Spray and sanitised. To assess the impact of the sterilization on the lens’s fiducial localization error, two metal marker frames equipped with four sockets designed for the Radix lenses were used. The reference marker frame was secured to a flat table while the other marker frame moved along a fixed path on the table. The position and orientation of the marker clusters were streamed into 3D Slicer using the Public Library for Ultrasound Toolkit (PLUS). A plane was then fit to the recorded marker poses in 3D Slicer using Iterative Closest Point and the marker registration error was computed. Distance from the camera, angle of view, and distance from the edges of the field of view were held constant.
RESULTS: With each round of sterilization, the error of coated lenses was lower than the unprotected lenses, and the error showed a slightly increasing trend (Fig. 2). The lenses appeared fainter in the tracking software the lenses appeared fainter while all lenses remained trackable and visible despite the significant removal of reflective coating.
When reflective coating was fully rubbed off the lenses, the tracking software could still localize the markers; however, the lenses did appear much fainter in the tracking software. We observed that the reflective coating rubs off the lens in routine handling, and recoating with Zink-Alu spray can partially restore marker visibility. Using protective nail polish coating prevented the reflective coating from rubbing off altogether.
CONCLUSIONS: This exploratory study represents a promising step toward achieving low-cost sterilization of retroreflective infrared markers. Studies with the NousNav system need to be undertaken to measure the extent of degradation in tracking accuracy is tolerable as a side effect of marker sterilization. Before using coated Radix lenses on human subjects, it must be verified that the protective coating (common nail polish in our study) is fully biocompatible and remains undamaged by the cold sterilization agent (Sekusept™ Aktiv in our study.)
REFERENCES: [1] NousNav: A low-cost neuronavigation system for deployment in lower-resource settings, International Journal of Computer Assisted Radiology and Surgery, 2022 Sep;17(9):1745-1750. [2] NDI Radix™ Lens (https://www.ndigital.com/optical-measurement-technology/radix-lens/)
METHODS: We propose to modify NDI Radix™ Lens [1], single-use retroreflective spherical marker manufactured by Northern Digital, Waterloo, Canada. Radix lenses are uniquely promising candidates for liquid sterilization given their smooth, spherical surface. This quality also makes them easier to clean perioperatively compared to other retroreflective infrared marker designs. Initial experiments show that liquid sterilization agents degrade the marker’s retroreflective gold coating (Fig. 1). Hence the objective of this project is to develop a method to protect the Radix Lenses with a layer of coating material that does not allow the sanitizing agent to degrade the coating to enable the lens to survive multiple sanitation cycles while retaining sufficient tracking accuracy. We employed two cold liquid sterilisation agents, household bleach which is a common ingredient of liquid sterilisation solutions and Sekusept™ Aktiv (Ecolab, Saint Paul, MN, USA), which is widely known for sterilizing laparoscopy instruments. Store-bought nail polish and Zink-Alu Spray were used to coat the lenses. Data were obtained by recording five tests each with five rounds of sterilization, each tested with six trials, for a total of 150 recordings. The five tests were as follows: 1) Radix lens coated with nail polish and bleached, 2) uncoated and bleached, 3) coated with nail polish and sanitised, 4) uncoated and sanitised, and 5) coated with Zink-Alu Spray and sanitised. To assess the impact of the sterilization on the lens’s fiducial localization error, two metal marker frames equipped with four sockets designed for the Radix lenses were used. The reference marker frame was secured to a flat table while the other marker frame moved along a fixed path on the table. The position and orientation of the marker clusters were streamed into 3D Slicer using the Public Library for Ultrasound Toolkit (PLUS). A plane was then fit to the recorded marker poses in 3D Slicer using Iterative Closest Point and the marker registration error was computed. Distance from the camera, angle of view, and distance from the edges of the field of view were held constant.
RESULTS: With each round of sterilization, the error of coated lenses was lower than the unprotected lenses, and the error showed a slightly increasing trend (Fig. 2). The lenses appeared fainter in the tracking software the lenses appeared fainter while all lenses remained trackable and visible despite the significant removal of reflective coating.
When reflective coating was fully rubbed off the lenses, the tracking software could still localize the markers; however, the lenses did appear much fainter in the tracking software. We observed that the reflective coating rubs off the lens in routine handling, and recoating with Zink-Alu spray can partially restore marker visibility. Using protective nail polish coating prevented the reflective coating from rubbing off altogether.
CONCLUSIONS: This exploratory study represents a promising step toward achieving low-cost sterilization of retroreflective infrared markers. Studies with the NousNav system need to be undertaken to measure the extent of degradation in tracking accuracy is tolerable as a side effect of marker sterilization. Before using coated Radix lenses on human subjects, it must be verified that the protective coating (common nail polish in our study) is fully biocompatible and remains undamaged by the cold sterilization agent (Sekusept™ Aktiv in our study.)
REFERENCES: [1] NousNav: A low-cost neuronavigation system for deployment in lower-resource settings, International Journal of Computer Assisted Radiology and Surgery, 2022 Sep;17(9):1745-1750. [2] NDI Radix™ Lens (https://www.ndigital.com/optical-measurement-technology/radix-lens/)